
Revised edition of the best-selling
project management book.

/Theory/In/Practice

Mastering Project Management

Scott Berkun

Making Things Happen
Mastering Project Management

Other resources from O'Reilly

Related titles

oreilly.com

Applied Software Process
Management

The Art of Agile
Development

The Art of SQL

Beautiful Code

The Myths of Innovation

Prefactoring

Process Improvement
Essentials

oreilly.com is more than a complete catalog of O'Reilly
books. You'll also find links to news, events, articles,
weblogs, samplechapters, and code examples.

'RFII IY oreinynetxom is the essential portal for developers interested
NETWORK in °pen and emer8ing technologies, including new plat-
l forms, programming languages, andoperating systems.

Conferences

j'REILLYNETWORK

ifari
(ookshelf.

O'Reilly brings diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the
innovator's knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub
scribers can zero in on answers to time-critical questions
in a matterof seconds. Readthe books on your Bookshelf
from cover to cover or simply flip to the page you need.
Try it today for free.

Making Things Happen
Mastering Project Management

Scott Berkun

O'REILLY8
Beijing • Cambridge • Farnham • Koln • Paris • Sebastopol • Taipei • Tokyo

Making Things Happen
by Scott Berkun

Copyright © 2008 Scott Berkun. All rights reserved. Printed in the United States of America.

Published byO'Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472

O'Reilly books maybepurchased foreducational, business, or sales promotional use. Online

editions are alsoavailable formosttitles (safari.oreilly.com). Formore information, contactour

corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: MaryTreseler

Production Editor Marlowe Shaeffer

Copyeditor: Marlowe Shaeffer

Proofreader Audrey Doyle

Indexer Ellen Troutman Zaig

Cover Designer Mark Paglietti

Interior Designers: Marcia Friedman and

Ron Bilodeau

Illustrator Robert Romano

Printing History:

March 2008: First Edition. (Arevisededition of the work previously published as The
Art ofProject Management.)

The O'Reilly logo isa registered trademark ofO'Reilly Media, Inc. Making Things Happen and

related trade dress aretrademarks ofO'Reilly Media, Inc. Many ofthedesignations used by

manufaaurers and sellersto distinguishtheir productsare claimedas trademarks. Where those

designations appearin thisbook, and O'Reilly Media, Inc.wasawareofa trademark claim, the

designations have been printed in capsor initialcaps.

While every precaution hasbeen taken in thepreparation ofthis book, thepublisher andauthor

assume no responsibility for errorsor omissions, or fordamages resulting fromthe use of the

information contained herein.

RepKbver™ ThisbookusesRepKover™, a durableand flexible lay-flat binding.

ISBN: 978-0-596-51771-7

[M] [06/08]

TABLE OF CONTENTS

mmmmS® Foreword w'

1 A briefhistoryof projectmanagement
(and whyyou should care) 1

Pari One PLANS

2 The truth about schedules 23

3 How tofigure outwhat todo 13

*\ Writing thegood vision 69

5 Where ideas come from 89

6 What to do withideas onceyou have them 113

Part Two SKILLS

7 Writing good specifications 135

8 Howto makegood decisions 155

9 Communicationand relationships 175

10 Hownot toannoypeople:
process, email, andmeetings 193

11 What to do when things go wrong 213

Part Three MANAGEMENT

12 Why leadership isbasedon trust 2H1

13 Making things happen 259

11 Middle-game strategy 279

15 End-game strategy 301

16 Powerandpolitics 329

Appendix Aguidefordiscussion groups 353

Annotated bibliography 361

Acknowledgments 369

Photo credits 371

Index 373

FOR E WOR D

Somethingcrazyhappened with the first edition of this book. It sold lots of copies. It
made several bestseller lists, was nominated for awards, and earned enough attention to

send its author around the world to talk about ideas from the book. Then something

crazier happened: the book's title needed to change.

Taking this as an opportunity, the folks at O'Reilly and I agreed we shouldadd more
value to the book if it was goingto have a secondlifewith a new name. Firstpublishedas
The Art ofProject Management, this text hasbeencleaned-up, enhanced, updated, and
expanded foryour pleasure. You maywonder why the titlewaschanged. Here are some
possibilities:

1. TheDepartment of Homeland Security discovered a terrorist threat in the old title.

2. Tim O'Reilly realized his media empire could achieve instantworlddomination if he
could justgetowners ofthe first book to buyit a second time, underthe ruse ofa title
change.

3. <Insert motive from your own imagination hero

Whatever the reason, here we are. I've done my best to improve this book without

pulling a George Lucas Star Wars fiasco. Here's thebird's-eye view ofwhat has changed:

• The text is revised for clarity and concision. It's a more confident, fluff-free book.

• The addition of more than 120 thought-provoking exercises, appearing at the end of
every chapter.

• By popular demand, endnotes were promoted to footnotes, appearing within the
chapter texts.

• There is a new discussion guide to help you form groups to keep learning.

Ifyou are new to this bookin any form, the Preface will fill you in on everything you
need to know.

vii

Since the first edition waspublished two years ago, I've been busy. I wroteanother book
called The Myths ofInnovation; createdvarious essays, podcasts, and videos; and I continue
to run a popular blogon creativity and management. It's all up at www.scottberkun.com; I
hope you'll stop by, asyour purchase ofthis book helps make the many free things I
produce possible.

viii FOREWORD

Cheers and best wishes,

Scott Berkun

Redmond, WA

March 2008

Mils M^^^mmmsiSi^k

PREFACE

M y favorite word in the English language is how. How does this work? How was this
made? Howdid they do this? WheneverI see something interestinghappen, I'm filled
with questions that involve this small but powerful little word. And most of the answers I
find center on how people apply their own intelligenceand wisdom, rather than their
knowledge of specific technologies or theories.

Overyears ofbuilding thingsand comparing my experiences to those of other managers,
programmers, and designers, I've learned how to manage projects well. This book is a

summation of those ideas.It includesapproaches for leadingteams, working with ideas,
organizingprojects, managing schedules, dealingwith politics, and making things
happen—even in the face of great challenges and unfair situations.

Despite the broad title of this book, most of my working experience comes from the tech
sector, and in particular, Microsoft Corporation. I worked there from 1994 to 2003,

leading teams of people on projectssuch as Internet Explorer, Microsoft Windows, and
MSN. For a few yearsI worked in Microsoft's engineering excellence group. While there,
I was responsible for teaching and consultingwith teams acrossthe company, and was
often asked to lecture at public conferences, corporations, and universities. Most of the
advice, lessons, and stories in this book come from those experiences.

AlthoughI comefrom a software and web development background, I've written this
book broadlyand inclusively, calling on references and techniquesfrom outside the
engineering and management domains.There is great value here for people in the
generalbusiness world. I'm convinced that the challenges of organizing, leading,
designing, and delivering work have much in common, regardless of the domain. The
processes involved in making toaster ovens, skyscrapers, automobiles, web sites, and

software products share many of the same challenges, and this bookis primarily about
overcoming those challenges.

Unlike some other books on how to leadprojects, thisbookdoesn't ascribe to any grand
theory or presumptively innovative philosophy. Instead, I've placed my bet on
practicality and diversity. Projects result in goodthingswhen the right combinationof
people, skills, attitudes, and tactics is applied, regardless of their origin or (lack of)
pedigree. The structure of this book is the most sensible one I found: focus on the core

situations and provide advice on how to handle them well. I've wagered heavily on
picking the righttopics and giving good advice overallother considerations. I hope you
find that I've made the right choice.

x PREFACE

Who should read this book

To see if this book is for you, I suggest flipping back to the Table of Contents, picking a

topic you're interested in, and skimming through what I have to say. I don't trust

prefaces much, and I recommend you don't either; they rarely have the same style or

voice as the rest of the book. But here goes anyway.

The book will be most valuable for people who fit themselves into one or more of the

following categories:

• Experienced team leaders and managers. This book is well suited for anyone
playing a leadership role on any kind of project. The examples are from software
development, but many concepts apply easily to other kinds of work. You might be
the official team leader, or simply one of the more experienced people on the team.
While some topics may be very familiar, the direct approach the book takes will help
you clarify and refine your opinions. Even if you disagree with points I make, you will
have a clear foundation to work against in refining your own point of view.

• New team leaders and managers. If you look at the topics listed in the Table of
Contents, you'll find a solid overview of everything project leaders and managers actu
allydo. Eachchapter provides coverage of the common mistakes even experienced
people make, with explanations as to why they happenand what tactics can be used
to avoid them. This book provides you with a broader view of the new responsibilities
you've taken on and the smartest ways to go about managing them. Because most
chapters cover big topics, they often include annotated references to deeper sources.

• Individual programmers and testers, or other contributors to projects. This
book will improve your understanding of what you're contributing to, and what
approaches you can use to be effective in doing so. Ifyou've ever wondered why
projects change directions so oftenor seem to be poorly managed, this bookwill help
you understand the causes and remedies. Ifnothing else, reading thisbookwill help
you increase the oddsyour work will makea difference (and that you willstay sane
while doingit). If you are interested in eventually leading teams yourself, this book
will help you explore what that will really be like and whether you are cut out for it.

• Students of business management, product design, or software engineering. I
use the word students in the broadest sense: if you have a personal interest in these
topics or are formally studying them, thisbook should be appealing. Unlike textbook
coverage of these topics, this book is heavily situation- and narrative-focused. The
experiences and stories are real, and they are the basis for the lessons and tactics—not
the other way around. I deliberately avoid drawing lines between different academic
subjects because, in my experience, those lines neither help projectsnor contribute to
understanding reality (the universe is not divided in the same way universities tend to

PREFACE xi

be). Instead, this book combines business theory, psychology, management tactics,
designprocesses, and software engineering in whatever way necessaryto offeradvice
on the outlined topics.

Assumptions I've made about you in
writing this book
• You are not stupid. I assume that if I've chosen the right chapters and written them

well, you won't need me to spend time slowly constructing elaborate frameworks of
information. Instead, I will get to the point and spendtime there. I assume you're a
peer—perhaps with more, less, or different experience—who has dropped by for some
advice.

• You are curious and pragmatic. I draw on examples from many disciplines, and I
assume you'll find value in lessons from outsideof web and softwaredevelopment.
This won't get in the way, but pointers for curious minds willsurface, sometimes just
in footnotes. I assume youwant to learn, are opento different ideas, and will recog
nize the value of well-considered opinions—even if you don't agree with them.

• You do not like jargonor big theories. I don't thinkjargon andbig theories helpin
learning and applying newinformation. I avoid them, except wheretheyprovide a
path to useful information that will be helpful later on.

• You don't take yourself, software, or management too seriously. Software
development and project management can be boring.While this book won't be a com
ical romp (although a book byMark Twain orDavid Sedaris on software engineering
has potential), I won't hesitate to makejokesat my expense (or someone else's
expense), or use examples that make points through comedic means.

How to use this book

If at any point you get bored, or findthe examples distracting, skipahead. I wrote this
bookwith consideration forpeople who skim or havea specific problem they need advice
on rightaway. Thechapters standup well on theirown,particularly those on human
nature (Chapters 8-13and Chapter 16). However, there issome benefit to reading it
straight through; some laterconcepts build on earlier ones, and the book roughly follows
the chronology of most projects. The first chapter is the broadest in the book and has a

deeper tone than the rest. Ifyou'recurious about whyyou should care aboutproject
management, or what other important people have saidabout it, then you shouldgive it
a shot. Ifyou tryit andhateit, I definitely recommend giving another chapter a try
before abandoning ship.

xii PREFACE

All of the references and URLs listed in the book, as well as additional notes and

commentary, are online at www.makingthingshappen.org. If you're interested in discussion

groups about the book, make sure to peek at the Appendix in the back. It explains what

groups exist and gives you advice on how to start your own.

And now, because you were smart and patient enough to read this entire introduction,

I'll assume you're up to speed on the other mechanics of book reading (page numbers,

footnotes, and all that) and just get out of your way.

How to contact us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://www.oreilfy.com/catalog/9780596517717

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly

Network, see our web site at:

http://www. oreilfy.com

Safari Books Online

When you see a Safari® Books Online icon on the cover of your

3df3 PI favorite technology book, that means the book is available online
Books online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free
at http://safari.oreilfy.com.

PREFACE xiii

CHAPTER ONE

A brief history of project management
(and why you should care)

I n many organizations, the person leading a project doesn't have the job title project
manager. That's OK. Everyone manages projects in their daily work, whether they are

working alone or leading a team. For the moment, these distinctions are not important.

My intent is to capture what makes projects successful, and how the people who lead

successful projects do it. These strategies don't require specific hierarchies, job titles, or

methods. So, if you work on a project and have at least some responsibility for its out

come, what follows will apply to you. And should your business card happen to say

projectmanager on it, all the better.

This book is useful in three ways: as a collection of individual topic-focused essays, as a

single extended narrative, and as a reference for common situations. Each chapter takes

on a different high-level task, provides a basic framework, and offers tactics for

successfully completing the task. However, in this opening chapter, I need to take a

different approach: there are three broader topics that will make the rest of the book

easier to follow, and I will present them now.

The first is a short history of projects and why we should learn from what others have

done. The second is some background on the differentflavors of project management,
including some notes from my experience working at Microsoft. And the third is a look at

the underlying challenges involved in project management and how they can be

overcome. Although these points will be useful later on, they are not required to

understand the following chapters. So, if you find the approach in this first chapter too
wide for your liking, feel free to move on to Chapter 2 and the core of this book.

Using history
Project management, as an idea, goes back a very long way. If you think about all of the

things that have been built in the history of civilization, we have thousands of years of
project experience to learn from. A dotted line can be drawn from the software

developers of today back through time to the builders of the Egyptian pyramids or the

architects of the Roman aqueducts. For their respectiveeras, project managers have

played similar roles, applying technology to the relevant problems of the times. Yet today,
when most people try to improve how their web and software development projects are
managed, it's rare that they pay attention to lessons learned from the past. The timeline

we use as the scope for useful knowledge is much closer to present day than it should be.

The history of engineering projects reveals that most projects have strong similarities.

They have requirements, designs, and constraints. They depend on communication,

decisionmaking, and combinations of creativeand logical thought. Projectsusually
involve a schedule, a budget, and a customer. Most importantly, the central task of

2 CHAPTER ONE

projects is to combine the works of different people into a singular, coherent whole that

will be useful to people or customers. Whether a project is built out of HTML, C++, or

cement and steel, there's an undeniable core set of concepts that most projects share.

Curious about better ways to lead web and software development efforts, I've taken a

serious interest in that core. I studied other fields to see how they solved the central

challenges to their projects. I wondered how projects like the Hubble Space Telescope and

the Boeing 777 were designed and constructed. Could I reuse anything from their

complex specifications and planning processes? Or when the Chrysler Building was built

in New York City and the Parthenon in Athens, did the project leaders plan and estimate

their construction in the same way my programmers did? What were the interesting

differences, and what can be gained by examining those differences?

How about newspaper editors, who organize and plan for daily production of

information? They were doing multimedia (pictures and words) long before the first

dreams of web publishing. What about feature film production? The Apollo 13 launch? By

examining these questions, I was able to look at how I went about leading project teams

in a new way.

However, these inquires didn't always provide obvious answers. I can't promise that

you'll ship sooner or plan better specifically because the advice in this book was

influenced by these sources. But I do know that when I returned to the software world

after looking elsewhere, my own processes and tools looked different to me. I found ways

to change them that I hadn't consideredbefore. On the whole, I realizedthat many of the
useful approaches and comparisons I found were never mentioned during my computer

science studies in college. They were never discussed at tech-sector conferences or

written about in trade magazines.

The key lessons from my inquiries into the past are the following three points:

1. Project management and software development are not sacred arts. Any
modern engineering work is one new entry in the long history of making things. The
technologies and skillsmay change, but many of the core challenges that make
engineering difficult remain. All things, whether programming languages or
development methodologies, are unique in some ways but derivative in others. But if
we want to reuse as much knowledge as we can from the past, we need to make sure

we're open to examining both aspects—the unique and the derivative—in comparing
with what has come before.

2. The simpler your view of what you do, the more power and focus you will
have in doing it. If we keep a simple view of our work, we can find useful
comparisons to other ways to make things that exist all around us. There will be more
examples and lessons from history and modern industries that can be pulled from,

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 3

compared with, and contrasted against. This is similar to the concept defined by the
Japanese word shoshin—which means beginner's mind,l or open mind—an essential
part of many martial arts disciplines. Staying curious and open is what makes growth
possible, and it requires practice to maintain that mindset. To keep learning, we have
to avoid the temptation to slide into narrow, safe views of what we do.

3. Simple doesn't mean easy. The best athletes, writers, programmers, and managers
tend to be the ones who always see what they do as simple in nature but
simultaneously difficult. Remember that simple is not the same thing as easy. For
example, it's a simple thing to run a marathon. You start running and don't stop until
you've reached 26.2 miles. What could be simpler? The fact that it's difficult doesn't

negate its simplicity. Leadership and management are also difficult, but their nature—

getting things done in a specificway toward a specificgoal—is simple.

I'll allude to these concepts in many chapters. So, if I make references that are out of the

stereotypical bounds of software development, I hope you'll understand why. And when

I suggest that decision making or scheduling are simple management functions, I'll

assume you'll know that this in no way suggests these things are easy to do.

Learning from failure
"Humanbeings,who arealmostunique [among animals] in havingthe ability to

learn from the experience of others,arealso remarkable fortheir apparent
disinclination to do so."

—Douglas Adams

One simple question that arises in studying the history of projects is this: why would

anyone willingly suffer through mistakes and disappointments if they could be avoided?

If the history of both ancient and modern engineeringis public, and we get paid for doing
smart things regardless of where the inspiration came from, why do so few organizations
reward people for harvesting lessons from the past? As projects are completed or are

canceled (and many development projects end this way2) every day, little is done to learn

from what happened. It seemsthat managers in most organizations rarely reward people
for seeking out this kind of knowledge. Perhaps it's fear of what they'll find (and the fear

of being held accountable for it). Or maybe it's just a lack of interest on anyone's part to
review painful or frustrating experiences when time could be spent moving on to the
next new thing instead.

1 Beginner's mind is an introductory concept of Zen Buddhism. The canonical story is that of the
empty cup: if you hold on tightly to what your cup is filledwith, your cup will never have room
for new knowledge. See Shunryu Suzuki's Zen Mind, Beginner's Mind (Weatherhill, 1972).

2 The CHAOS Report (The Standish Group) is a commonly referenced paper on budget, schedule,
and general failures of software projects. See http://standishgroup.com/sample_research/.

1 CHAPTER ONE

In Henry Petroski's book To Engineer IsHuman: The Role ofFailure in Successful Design

(Vintage Books, 1992), he explains how many breakthroughs in engineering took place

as a result of failure. In part, this happens because failures force us to pay attention. They

demand us to re-examine assumptions we'd forgotten were there (it's hard to pretend

everything's OK when the prototype has burst into flames). As Karl Popper3 suggested,

there are only two kinds of theories: those that are wrong and those that are incomplete.

Without failure, we forget, in arrogance, that our understanding of things is never as

complete as we think it is.

The trick then is to learn as much as possible from other people's failures. We should use

their experiences to leverage against the future. While the superficial details of failure

might differ dramatically from project to project, the root causes or team actions that led

to them might be entirely transferable (and avoidable). Even on our own projects, we

need to avoid the habit of running away and hiding from failures. Instead, we should see

them as opportunities to learn something. What factors contributed to it happening?

Which ones might be easy to minimize or eliminate? According to Petroski, real

knowledge from real failure is the most powerful source of progress we have, provided

we have the courage to carefully examine what happened.

Perhaps this is why The Boeing Company, one of the largest airplane design and

engineering firms in the world, keeps a black book of lessons it has learned from design

and engineering failures.4 Boeing has kept this document since the company was formed,

and it uses it to help modern designers learn from past attempts. Any organization that

manages to do this not only increases its chances for successfulprojects, but also helps

create an environment that can discuss and confront failure openly, instead of denying

and hiding from it. It seems that software developers need to keep black books of their

own.

Web development, kitchens, and
emergency rooms

One problem with history is that it's not always relatable. It can be hard to apply lessons

across decades and sustain empathy for things that seem so different from how work is

done today. One alternative is to make comparisons with interesting kinds of modern

projects. While this doesn't have the gravitas of engineering history, it does allow for

first-person experiences and observations. Often, seeing things firsthand is the only way

to give people enough information to make connections among diverse ideas.

3 Karl Popper was a prominent philosopher of science in the 20th century. See http://en.wikipedia.
org/wiki/Karl_Popper.

4 From James R. Chiles, Inviting Disaster: LessonsfromtheEdge of Technology (HarperBusiness, 2002).

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 5

Asan example, I know a web developer who believes that his work is unlike anything
else in the history of the universe. He feels that because web development requires him
to make complex engineering decisions—designing and coordinating as he goes, verifying
changes in a matter of hours or even minutes, and then publishing it all to the world—his

project and task management is unlike anything ever seen before. He is proud to rattle off

CSS, XHTML, Flash, Ajax, and other technologies he has mastered, claiming that they

would have baffledthe greatest minds 50 years ago. I'm sure that in your experience,
you've met people like him. Or perhaps you have worked in situations where it seemed

improbable that anyone else in the universe ever managed anything as complex as what
you were doing.

I suggested to this developer friend that he wander into the back of his favorite lunch

establishment on a busy day. For a variety of reasons, it's interesting to step foot into

kitchens (see Anthony Bourdain's excellentbook, Kitchen Confidential, Ecco, 2001), but

my specific point was about productivity. The first time anyone sees the quick task

management and coordination that occur in a busy professionalkitchen, he's likely to
reconsider how difficulthis own job is. Cooksare often juggling frying pans with different

orders at different states of completion, and scrambling between multiple sets of burners

in opposite corners of the kitchen, while waiters run in and out, delivering news of new
adjustments and problems from customers.

Allof this happens in small, crampedrooms, wellover 90 degrees, with bright fluorescent
lights glaring above. And despite how many orders go out every few seconds, new ones
come in just as fast. Sometimesorders get sent back, or, much like software projects,
require custom and last-minute modifications (table 1 is lactose intolerant; table 2 needs

the sauce on the side, etc.). Large, busy kitchens are amazing to watch. As chaotic as they
may seem at first, great kitchens run with a level of intensity and precision that blows
most development teams away.

Working chefs and line cooks are culinary project managers, or as Bourdain refers to

them, air traffic controllers (another profession for the introspective to consider). Even
though kitchen staff workson a scale smaller and less celebrated than a manager of a
software developmentteam, there's no comparison for dailyintensity. If you doubt me,
next time you're at that busy lunch place, ask your server if you can peek inside the

kitchen. He might not let you, but if he does, you will not be disappointed. (Some
trendier restaurants and bars have open kitchens. If you find one, sit as close to the

kitchen as you can. Then follow one person for a few minutes. Watch how orders are

placed, tracked, constructed, and delivered. If you go on a busy day, you'll think
differently about how software bugs are opened, tracked, and fixed.)

6 CHAPTER ONE

Another interesting field lesson in project management comes from hospital emergency

rooms. I've watched on the Discovery Channel and PBS how small teams of expert

doctors, nurses, and specialists work together as a project team to treat the diverse and

sometimes bizarre medical situations that come through the hospital doors. It's not

surprising that this is the profession that invented the process of triage, a term commonly

used on software projects to prioritize issues and defects (discussed in Chapter 15).

The medical environment, especially trauma situations, offers a fascinating comparison

for team-based work, high-stress decision making, and project outcomes that affect many

people every day (see Figure 1-1 for a rough comparison of this and other work

environments). As Atul Gawande wrote in his excellent book, Complications: A Surgeon's

Notes on an Imperfect Science (Picador USA, 2003):

We look for medicine to be an orderly field of knowledge and procedure. But it is

not. It is an imperfect science, an enterprise of constantly changing knowledge,

uncertain information, fallible individuals, and at the same time lives on the line.

There is science in what we do, yes, but also habit, intuition, and sometimes plain

old guessing. The gap between what we know and we aim for persists. And this gap

complicates everything we do.

film /
movies

S&PJkJare Requirements
development

Mek Preproduction
development ——

&mer^ency Via. <n osties
room

Kitchen

FIGURE 1 -1. In the abstract,many disciplines have similarprocesses. Theyall dedicate time to planning,

executing, and refining. (However, you should never go to a kitchenfor medical treatmentor eat in an

emergency room.)

This point, and many others in Gawande's enlightening book, holds true for software

development. Fred Brooks, in the classic book on software engineering, TheMythical Man-

Month (Addison-Wesley Professional, 1995), makes similar comparisons between teams of

surgeons and teams of programmers. Even though lives are rarely at stake when working

on web sites or databases, there are many valid similarities in the challenges these

different teams of people must face.

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 7

The role of project management
Project management can be a profession, a job, a role, or an activity. Some companies

have project managers whose job is to oversee entire 200-person projects. Others use the

title for line-level junior managers, each responsible for a small area of a large project.

Depending on how an organization is structured, what its culture is, and what the goals

of the project are, project management can be an informal role ("it's done by whomever,

whenever necessary") or highly defined ("Vincent, Claude, and Raphael are full-time

project managers").

In this book, I'll primarily use the phrase project manager, or ?M, to refer to whoever is

involved in project leadership and management activity. By project management activity I

mean leading the team in figuring out what the project is (planning, scheduling, and

requirements gathering), shepherding the project through design and development work

(communication, decision making, and mid-game strategy), and driving the project

through to completion (leadership, crisis management, and end-game strategy).

If this sort of work is structured less formally in your world, just translate project

manager or PM to mean "person doing project management tasks, even though it's not

her primary job" or "person thinking about the project at large." I've encountered many

different ways for these activities to be distributed across teams, and the advice in this

book is largely indifferent to them. This book is less about job titles and formalizations,

and more about how to get things done and make things happen. But to keep my writing
as simple as possible, I'll rely on the phrase project manager, or PM.

Sometimes the absence of a dedicated project manager works fine. Programmers and

their bosses maintain schedules and engineering plans (if any), and a business analyst or

marketing person does the planning or requirements work. Anything else that might

qualify as project management simply gets distributed across the team. Perhaps people on

the team have been hired for their interest beyond writing code. They might not mind

early planning, user interface design, or business strategy. There can be significant

optimizations in working this way. As long as everyone is willing to pay the tax of

responsibility for keeping things together, and distributing the burden that a dedicated

project manager would carry for the team, there's one less employee that the team needs.

Efficiency and simplicity are good things.

But other times, the absence of a project manager creates dysfunction. Without a person

whose primary job is to shepherd the overall effort, individual biases and interests can

derail the directions of the team. Strong adversarial factions may develop around

engineering and business roles, slowing progress and frustrating everyone involved.

8 CHAPTER ONE

Consider that in hospital emergency rooms, one doctor takes the lead in deciding the

course of action for a patient. This expedites many decisions and gives clarity to the roles

that everyone on the trauma team is expected to play. Without that kind of clear

authority for project management-type issues, development teams can run into trouble. If

there is no clear owner for leading bug triage, or no one is dedicated to tracking the

schedule and flagging problems, those tasks might lag dangerously behind individual,

programming-centric activities.

While I think many of the best programmers understand enough about project

management to do it themselves, they also recognize the unique value of a good,

dedicated person playing the role of manager.

Program and project management at
Microsoft

Microsoft had a problem in the late 1980s regarding how to coordinate engineering

efforts with the marketing and business side of each division (some might say this is still a

problem for Microsoft and many other companies). A wise man named Jabe Blumenthal

realized that there could be a special job where an individual would be involved with

these two functions, playing a role of both leadership and coordination. He'd be involved

in the project from day one of planning, all the way through the last day of testing. It had

to be someone who was at least technical enough to work with and earn the respect of

programmers, but also someone who had talents and interests for broader participation in

how products were made.

For this role to work, he'd have to enjoy spending his days performing tasks as varied as

writing specifications, reviewing marketing plans, generating project schedules, leading

teams, doing strategic planning, running bug/defect triage, cultivating team morale, and

doing anything else that needed to be done that no one else was doing (well). This new

role at Microsoft was called program manager. Not everyone on the team would report

directly to him, but the program manager would be granted significant authority to lead

and drive the project. (In management theory, this is roughly the idea of a matrix

organization,5 where there are two lines of reporting structure for individuals: one based

on function and the other based on project. So, an individual programmer or tester might

have two reporting relationships—a primary one for her functional role and a secondary,

but strong, one for the project she works on.)

5 A good summary of matrix and other organization types can be found in Steven A. Silbiger's
The Ten-Day MBA (William Morrow and Company, 1993), pp. 139-145. But almost any book on
management theory covers this topic.

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 9

Jabe played this role on a product called Multiplan (later to become Microsoft Excel), and

it worked. The engineering and development process improved along with the quality of

coordination with the business team, and throughout the hallways at Microsoft there was

much rejoicing. After many memos and meetings, most teams within the company

slowly adopted the role. Say what you will, good or bad, about the resulting products, but

the idea makes sense. By defining a role for a line-level generalist who was not a gofer or

a lackey, but a leader and a driver, the dynamics of how development teams worked at

Microsoft changed forever. This role of program manager was what I did through most of

my career at Microsoft, and I worked on product teams that included Internet Explorer,

MSN, and Windows. Eventually, I even managed teams of people who played this role.

To this day, I don't know of many companies that have gone as far in redefining and

formalizing a specialized form of project management. It was rare in my many

interactions with other web and software development firms to encounter someone who

played a similar kind of role (either they were engineers or business types, or on rare

occasions, designers). Many companies use team structures for organizing work, but few

define roles that cross over engineering and business hierarchies deliberately. Today,

there are more than 5,000 program managers at Microsoft (out of more than 80,000 total

employees), and although the power of the idea has been diluted and abused, the core

spirit of it can be found in many teams within the company.

But regardless of what it said on my business card, or what Microsoft lore you choose to

believe or ignore, my daily functions as a program manager were project management

functions. In the simplest terms, this meant that I was responsible for making the

project—and whoever was contributing to it—as successful as possible. All of the chapters

in this book reflect the core tasks involved in doing this, from early planning (Chapters 3

and 4), to spec writing (Chapter 7), to decision making (Chapter 8), to implementation

management and release (Chapters 14 and 15).

Beneath these skills, certain attitudes and personality traits come into play. Without

awareness of them, anyone leading or managing a project is at a serious disadvantage.

The balancing act of project
management

It is hard to find good project managers because they need to maintain a balance of

attitudes. In his essay "Pursuing the Perfect Project Manager,"6 Tom Peters calls these

conflicting attitudes paradoxes or dilemmas. This name is appropriate because different

situations require different behavior. This means that a project manager needs not only to

be aware of these traits, but also to develop instincts for which ones are appropriate at

6 Visit http://www.tompeters.com/col_entries.php?note=005297&year=1991.

10 CHAPTER ONE

which times. This contributes to the idea of project management as an art: it requires

intuition, judgment, and experience to use these forces effectively. The following list of

traits is roughly derived from Peters' essay:

• Ego/no-ego. Because of how much responsibility project managers have, they often

derive great personal satisfaction from their work. It's understandable that they'd have

a high emotional investment in what they're doing, and for many, this emotional con

nection is what enables them to maintain the intensity needed to be effective. But at

the same time, project managers must avoid placing their own interests ahead of the

project. They must be willing to delegate important or fun tasks and share rewards

with the entire team. As much as ego can be a fuel, a good project manager has to rec

ognize when his ego is getting in the way.

• Autocrat/delegator. In some situations, the most important things are a clear line of

authority and a quick response time. A project manager has to be confident and will

ful enough to take control and force certain actions onto a team. However, the gen

eral goal should be to avoid the need for these extreme situations. A well-managed

project should create an environment where work can be delegated and collaborated

on effectively.

• Tolerate ambiguity/pursue perfection. The early phases of any project are highly

open and fluid experiences where the unknown heavily outweighs the known. As

we'll discuss in Chapters 5 and 6, controlled ambiguity is essential for good ideas to

surface, and a project manager must respect it, if not manage it. But at other

moments, particularly in the later phases of a project, discipline and precision are par

amount. It requires wisdom to discern when the quest for perfection is worthwhile,

versus when a mediocre or quick-and-dirty solution is sufficient. (See the section

"Finding and weighing options" in Chapter 8.)

• Oral/written. Despite how email centric most software development organizations

are, oral skills are critically important to project management. There will always be

meetings, negotiations, hallway discussions, and brainstorming sessions, and the

project manager must be effective at both understanding and communicating ideas

face to face. The larger the organization or the project is, the more important written

skills become. Despite her personal preferences, a project manager needs to recognize

when written or oral communication will be more effective.

• Acknowledge complexity/champion simplicity. Many people fall victim to com

plexity. When they face a complex organizational or engineering challenge, they get
lost in the details and forget the big picture. Others stay in denial about complexity

and make bad decisions because they don't fully understand the subtleties of what's

involved. The balancing act here is to recognize which view of the project is most use

ful for the problem or decision at hand, and to comfortably switch between them or

keep them both in mind at the same time (without your head exploding). Project

managers must be persuasive in getting the team to strive for simplicity in the work

they do, without minimizing the complexities involved in writing good, reliable code.

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 11

• Impatient/patient. Most of the time, the project manager is the person pushing for

action, forcing others to keep work lean and focused. But in some situations, impa

tience works against the project. Some political, cross-organizational, or bureaucratic

activities are unavoidable time sinks: someone has to be in the room, or be on the

conference call, and they have to be patient. So, knowing when to force an issue, and

when to back off and let things happen, is a sense project managers need to develop.

• Courage/fear. One of the great misnomers of American culture is that the brave are

people who feel no fear. This is a lie. The brave are those who feel fear but choose to

take action anyway. A project manager must have a healthy respect for all the things

that can go wrong and see them as entirely possible. But a project manager needs to

match this respect with the courage necessary to take on big challenges.

• Believer/skeptic. There is nothing more powerful for team morale than a respected

leader who believes in what she is doing. It's important for a project manager to have

confidence in the work being done and see true value in the goals that will be

achieved. At the same time, there is a need for skepticism (not cynicism) about how

things are going and the ways in which they are being done. Someone has to probe

and question, exposing assumptions and bringing difficult issues to light. The balanc

ing act is to somehow vigorously ask questions and challenge the assumptions of oth

ers without shaking the team's belief in what they are doing.

As Peters points out in his essay, it's very rare to find people capable of all of these skills,

much less with the capacity to balance them properly. Many of the mistakes that any PM

will make involve miscalculations in balancing one or more of these conflicting forces.

However, anyone can get better at improving his own ability to keep these forces

balanced. So, while I won't focus on this list of paradoxes heavily again (although it

comes up a few times later on), it is a worthy reference. Looking at this list of conflicting

but necessary forces can help you step back, reconsider what you're doing and why, and

make smarter decisions.

Pressure and distraction

One fear of those new to project management is that success requires change. New

projects are created with the intent to change the state of the world by modifying,

building, or destroying something. Maintaining the status quo—unless that's the explicit

goal, for some strange reason—is not a successful outcome. The world is changing all the

time and if a project is not as good today as it was last year, it means that it's fallen behind

because the goals were misguided or the execution of the project failed in some way.

It's hard to ignore the underlying pressure this implies for project managers, but it comes

with the territory. Don't just sit there—make it better. There is always a new way to

think, a new topic to learn and apply, or a new process that makes work more fun or

more effective. Perhaps this is a responsibility more akin to leadership than to

management, but the distinction between the two is subtle. No matter how much you try

12 CHAPTER ONE

to separate them, managing well requires leadership skills, and leading well requires

management skills. Anyone involved in project management will be responsible for some

of both, no matter what his job description says.

But getting back to the issue of pressure, I've seen many managers who shy away from

leadership moments (e.g., any moment where the team/project needs someone to take

decisive action) and retreat to tracking the efforts of others instead of facilitating or even

participating in them. If all someone does is keep score and watch from the sidelines, he

might be better suited for the accounting department. When someone in a leadership role

consistently responds to pressure by getting out of the fray, he's not leading—he's hiding.

Ineffective or pressure-adverse PMs tend to fade into the periphery of the project, where

they add little value.

Confusing process with goals

Some PMs in this situation resort to quantifying things that don't need to be quantified.

Unsure of what else to do, or afraid to do what most needs to be done, they occupy their

time with secondary things. And as the gap between the PM and the project grows, the

amount of unnecessary attention paid to charts, tables, checklists, and reports increases.

It's possible that at some point the PMs begin to believe that the data and the process are

the project. They focus on the less-important things that are easy to work with

(spreadsheets or reports), rather than the important things that are challenging to work

with (the programming effort or the schedule). They may develop the belief that if they

just follow a certain procedure to perfection and check the right things off the checklist,

the project is guaranteed to succeed (or, more cynically, any failure that might happen

won't technically be their fault).

To minimize the possibility of confusion, good project managers resist defining strict

boundaries around kinds of work they are willing or not willing to do. They avoid bright

yellow lines between project management tasks and the project itself. Adherence to

checklists implies that there is a definitive process that guarantees a particular outcome,

which is never the case. In reality, there are always just three things: a goal, a pile of

work, and a bunch of people. Well-defined roles (see Chapter 9) might help those people

to organize around the work, but the formation of roles is not the goal. A checklist might

help those people do the work in a way that meets the goal, but the checklist is not the

goal either. Confusing processes with the goals is one of the great sins of management. I

should know: I've committed it myself.

Years ago, working on the Internet Explorer 4.0 project, I was the PM for several large

areas of the user interface. I felt significant pressure: it was the largest assignment I'd ever

had. In response, I developed the belief that if I could write everything down into

checklists, I'd never fail. While things do need to be tracked carefully on a project, I'd

taken it too far. I'd built an elaborate spreadsheet to show multiple data views, and the

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 13

large whiteboards in my office were covered with tables and lists (and extra whiteboards

were on the way).

My boss let me run with it because things were going well. That is, until he saw me

spending more time with my checklists and processes than I did with my team—a big red

flag (warning sign). He came into my office one day, and seeing the comically large

matrix of checklists and tables I'd written on every flat surface in my office, sat me down

and closed the door. He said, "Scott, this stuff is nice, but your project is your team.

Manage the team, not the checklists. If the checklists help you manage the team, great.

But the way you're going, soon you'll be using your team to help you manage your

checklists."

So, instead of focusing on processes and methods, project managers should be focused on

their teams. Simple planning or tracking systems should certainly be used, but they must

match the complexity of the project and the culture of the team. More precisely, planning

and tracking should support the team in reaching project goals—not inhibit them. I'm

confident that as long as the PM is paying attention and has earned the team's trust, any

missing tasks, processes, reports, checklists, or other needed project management

machinery will become clear before the problems they might solve become serious.

As we'll discuss in Chapter 10, just because a book or an executive says to do something,

or because a technique was employed last month or last year, doesn't mean it applies

today. Every team and project is different, and there are often good reasons to question

old judgments. The reason to be conservative with methods and processes is that the

unnecessary ones tend to snowball, dragging teams down into the tar pit of difficult

projects, as described in Fred Brooks' The Mythical Man-Month. When processes are

required to manage processes, it's hard to know where the actual work is being done. It's

often the team leader or project manager who has the greatest ability to steer the team

clear of bureaucracy, or more cynically, to send the team full throttle into endless circles

of procedures and committee-driven thinking.

The right kind of involvement
All managers—from Fortune 500 executives to coaches of sports teams—are vulnerable

to over-involving themselves. They know that they are potential overhead, and

compulsive involvement is one convenient (though negative) way to try and compensate

for it. This partially explains the endless supply of micromanagers; the easiest move for a

weak manager is to abuse her power over her subordinates (and in extreme cases,

simultaneously blame the subordinates for being incompetent enough to need so much

attention). The insecurities managers have stem from the fact that, in industrial

revolution terms, managers are not in the line of production. They don't make things

with their hands, and they are not the same kind of asset as those who do.

l«f CHAPTER ONE

Managers are not hired to contribute a linear amount of work like a worker or

programmer is expected to do. Instead, leaders and managers are hired to amplify the

value of everyone around them. The methods for adding this kind of value are different

from working on the line. But because many managers are former programmers and

were promoted into management from the line, odds are good that they have more

confidence and skills at writing code than they do leading and managing people who are

writing code.

Like a coach for a baseball team, the presence of a manager is supposed to contribute

something different in nature from adding another individual contributor. Sometimes

this is done by settling arguments or shielding the team from politics. Other times, it's

providing good, high-level plans or finding clever workarounds for unexpected situations.

Because these contributions are harder to measure, many PMs struggle with the

ambiguity of their role. As managers, they are easy targets for blame and have few places

to hide. It takes a combination of conviction, confidence, and awareness to be effective

and happy as a leader of a team.

Take advantage of your perspective

The best way to find the points of leverage is to make use of the difference in psychology

gained from being off the line. A PM will, in the course of his duties, naturally spend

more time working with different people on the team than others do, thereby gaining

more sources of information and a wider perspective of the project. The PM will

understand the business view of the project as well as the technical view, and he'll help

the team translate between them when necessary. That wider perspective makes it

possible to deliver critical nuggets of information to the right people at the right time.

Though this power can have broad effects, what follows is a simple story that helps

illustrate this point in a comprehensive way.

As a habit, I've always walked the halls and dropped in on programmers who had their

doors open. I'd usually just make small talk, try to get them to laugh about something,

and ask them to show me what they were working on. If they offered, I'd watch a demo

of whatever they'd show me. Doing this every few days, even for a few minutes, often

gave me a good idea of the real status of the project (in Chapter 9, we'll discuss this

practice of management by walking around).

For example, one morning during the IE 5.0 project, I dropped by Fred's office. He was

arguing with Steve, another programmer, about how they were going to get the new List

View control to work properly—an unforeseen compatibility issue had been discovered

that morning. Neither one of them wanted to do the work. And from what I could hear,

it would take a half-day or more to fix. I poked my nose in and confirmed what they

were talking about. They nodded their heads, as if to say, "Yeah, why should you care?" I

then told them to go talk to Bill down the hall. They again asked why, thinking this was a

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 15

very specific architectural issue that I couldn't easily understand. I smiled and said,

"Because I just left his office, and he has the new tree control working perfectly on his

machine. He came across the problem last night and fixed it as part of another work item."

Now, of course, in this little story I didn't save the world or avert a major disaster. If I

hadn't made this connection for them, only a few hours or a half-day would have been

wasted (although, as we'll discuss later in Chapter 8, schedules generally slip a little at a

time). But that's not the point. Good project managers make it their business to know all

kinds of useful things about the state of the team—and the state of the world—and then

apply that knowledge to help people get stuff done. It's all of the small bits of timely

information transfer, like the one in this story, that make mediocre teams good and good

teams great. No project- or bug-tracking system completely replaces the need for people

to talk to each other about what's going on because social networks are always stronger

(and sometimes faster) than technological ones. The big challenges like project vision,

feature lists, and schedules always come down to lots of little challenges that are

positively influenced by how easily good knowledge and information flow through a

team. Project managers play a critical role in making that flow active and healthy.

But whether it's little or big things, the actions and decisions managers make should have

clear benefits for the entire team. It might take a week or a month to become visible, but

a good project manager will create a positive impact on the quality of the work produced,

and often the quality of life experienced by everyone involved. People will feel differently

about their work, will say openly that they have a better understanding of what they're

doing and why, and feel better about what's coming next than they did before. This kind

of change only happens one meeting, decision, or discussion at a time, but over the

course of a project, that vibe and energy can shift and improve dramatically.

Project managers create unique value

As a result, good managers and leaders often earn a special kind of respect from the

programmers, testers, designers, marketers, and documentation people who come into

contact with them. The PM should be able to perform feats of thinking, strategy, and

leadership that positively impact the team in ways few others can. Often this involves

finding shortcuts and clever optimizations in the daily workflow, or giving a boost of

enthusiasm or encouragement in the right way and at the right time. They don't have to

be superhuman, or even particularly bright, to do this (as I've no doubt discovered). They

just have to understand the advantage of their perspective and choose to make use of it.

There is one simple incontrovertible fact: project managers or leaders spend more time

with each person on the team than anyone else. They are in more meetings, drop by

more offices, and talk to more individual contributors than any other person. They may

make or influence more decisions than anyone else in the organization. If the project

16 CHAPTER ONE

manager is happy, sad, motivated, or depressed, some of that is going to rub off on

everyone she encounters. What PMs bring to the project, good or bad, will be contagious

for the rest of the team.

So, if the project manager is focused on, committed to, excited about, and capable of

succeeding, the odds increase that everyone else will behave the same way. Managers of

any kind are in similar positions of potential power, and there are few leverage points of

as much value in most working environments. This means that if it is at all possible to

cultivate the attitudes and ideas I've described so far, there is no greater place to make

those investments than in leaders and managers. This isn't to say that a project manager

has to be a charismatic hero figure who, with barely a shrug, can lead armies of

programmers into battle (see the section "The hero complex" in Chapter 11). Instead, he

just needs to be genuinely interested in helping his teammates' reports and be successful

at it more often than not.

In the end, the core idea I believe in is that as long as no one gets hurt (except perhaps

competitors), and you involved people in the right way, nothing else matters but the faa

that good stuff is made. It doesn't matter how many ideas came from you or someone

else, as long as the outcome is positive. Project management is about using any means

necessary to increase the probability and speed of positive outcomes. A useful daily

mantra I've used is "Make good stuff happen." People would see me in the hallway or

working with a programmer at a whiteboard and ask, "Hey Scott, what'cha doing?" And

I'd smile and say, "Making good stuff happen." It became a dominant part of how I

approached each and every day, and when I managed others, this attitude extended out

and across the team through them. As this book moves on to topic-focused chapters, I

hope you'll feel this attitude, and the core ideas of this opening chapter, come through.

Summary
Each chapter in this book will end with a short summary of key points to help you

review later:

• Project management is everywhere, and it's been around for a long time.

• If you keep a beginner's mind, you'll have more opportunities to learn.

• Project management can be a job, a role, or an activity (the advice in this book applies

well no matter how you define it).

• Program management is Microsoft's strongly defined project management role. It is

derived from the idea of a matrix organization.

• Leadership and management require an understanding of, and intuition for, several

common paradoxes. These include ego/no-ego, autocracy/delegation, and courage/

fear.

A BRIEF HISTORY OF PROJECT MANAGEMENT (AND WHY YOU SHOULD CARE) 17

• Watch out for pretension and over-involvement in your management activity. The

process should support the team, not the other way around.

• If you are a dedicated manager, look for ways to capitalize on your unique perspective

of the team and project.

Exercises

A. Pick your favorite friend who works in or studies a field other than yours. How does

he manage his projects? Is there a special job for the project leader, or is the work of

project management distributed across different people?

B. If being a good PM requires a balancing act of attitudes, how can a PM make sure she

is not going too far in one direction or another? How can a PM enlist the help of

people she works with to keep her in balance?

C. Make up a reason and throw a party. (You survived Chapter 1, isn't that reason

enough?) After you've recovered from your hangover, and bailed your friends out of

jail, consider the following: how is a party different from a project? Compare the

challenges and rewards of being a party organizer to being a project manager on a

work-related project. What's different and what's the same?

D. Think of a project you worked on that failed. What did you learn and how did you

learn it? List the mistakes you made and what you can do differently next time to

prevent them from happening again. The process of writing about it will force you to

think more carefully and gain more insight from the experience.

E. Can you think of a kind of work that doesn't involve project management? If so, how

do those in that field organize and plan how the work gets done? What limitations

does a lack of organization create? What opportunities does it create?

F. Can you create leadership moments, or are they events that happen for reasons out of

your control? If you wanted to increase the number of possibilities to demonstrate

leadership, what could you do?

G. Imagine a team where people are rewarded exclusively for how well they follow

processes and rules, instead of for reaching goals. What would happen to the quality of

work? What would the role of project manager be like? What does this say about the

potential dangers project managers can create?

H. Middle managers, or people who manage managers, are particularly prone to over-

involving themselves, and creating unnecessary processes, because they are in the

middle of the organization. How can a smart middle manager avoid the temptation to

micromanage and create too many rules?

18 CHAPTER ONE

PART ONE PLANS

' i^*'-i«prftr*a;.-^'s""

lit':

it

V^. '̂jflB•$93

'̂ .-'••SH •^M
•- ».:<•*:•••:*#=

The truth about schedules

p eople tend to be late. It might be only a few minutes, or just a couple of times a week,

but people are often behind on their daily schedules. (However, because denial is another

great skill humans have, I'll understand if you refuse to admit this applies to you.) High

school students are late for class, adults are late for meetings at work, and friends arrive

10 minutes late at the bar for drinks. We believe that being on time isn't about targeting a

specific moment but instead is about being within a range of moments. And for some that

range is wider than for others. Restaurant hosts are an interesting example. They claim a

table will be ready soon,l but often we're made to wait much longer than they said it

would be. It's these experiences of delayed schedules, being put on hold on the tele

phone, or waiting in the doctor's office, that have made us cynical about schedules—we

have so much experience with life not happening on time.

It shouldn't be a surprise then that so many projects come in late. Most of us arrive at the

task of scheduling projects with a poor track record for delivering or receiving things on

time. We tend to estimate based on weak assumptions, predict outcomes based on the

best possible circumstances, and—given our prior experiences—simultaneously avoid

placing confidence in schedules we see or create. Why we do this, how it impacts project

schedules, and what can be done to avoid these problems is the subject of this chapter.

But before we can figure out how to make better schedules, we first have to understand

what problems schedules solve. If they are so unreliable, why bother with them at all?

Schedules serve several different purposes—only some of which are focused on

measuring the use of time.

Schedules have three purposes
All schedules, whether for planning a party or updating a web site, serve three purposes.

The first is to make commitments about when things will be done. The schedule provides

a contract between every person involved, confirming what each person is going to

deliver over a particular period of time. Generally, when people think about project

schedules, it's this first purpose that they're thinking about. Schedules are often focused

externally, outside the project team rather than within, because they are used to help

close a deal or comply with a customer's timeline. Often, the customer is explicitly paying

for the timeline as well as for the service provided (think UPS or FedEx). In order to

allow customers or partners to make plans based on a given project, a time has to be

agreed upon for when specific things will happen.

1 Once, while dining at Pizzeria Uno in Pittsburgh, my friends and I were told a table would be
ready in 10 minutes. Exactly 10 minutes later, my friend Chad McDaniel asked about our table.
The hostess said, again, it would be ready in 10 minutes. Chad asked, "Is this the same 10 min
utes or a different 10 minutes?" She didn't appreciate the joke.

2H CHAPTER TWO

The second purpose of a schedule is to encourage everyone to see her efforts as part of a

whole, and to invest in making her pieces work with the others. Until there is a draft

schedule suggesting specific dates and times for when things have to be ready, it's

unlikely that connections and dependencies will be noticed. Without a schedule,

everyone will focus on her own tasks and not think about how her work will impact

others.

It's only when the details are written down, with people's names next to them, that real

calculations can be made and assumptions examined. This is true even for small teams or

for individuals working alone. There is psychological power in a schedule because it

publicizes the commitments being made. It is not as easy to forget or ignore something

when it's posted on a whiteboard in the hallway, reminding the team of what needs to be

done. And specific to PMs: with a draft schedule in place, questions about how realistic

certain things are can be raised, and comparisons can be made between what the project

is being asked to do and what is even possible.

This psychological shift is called a forcing function. A forcingfunction is anything that—

when put in place—naturally forces a change in perspective, attitude, or behavior. So,

schedules are important forcing functions for projects. If used properly by a PM,

schedules force everyone to carefully think through the work they need to do. This

forcing function is a critical step toward realizing the project's potential. Even if the

schedule slips, is doubled, or is halved, the commitments and connections everyone has

made as a result of drafting the schedule can be maintained. So, this second purpose of a

schedule can be achieved and can be entirely worthwhile even if the schedule itself turns

out to be seriously inaccurate. For example, if the project comes in very late, the

existence of a schedule will still enable the project to be completed.

The third purpose of schedules is to provide a tool to track progress and break work into

manageable chunks. Breaking things down into a one- or two-day size helps people

understand what they need to do. Imagine if, when building a house, the builder gave

one line item: "House: 120 days." With such low granularity, it's difficult for anyone,

including the builder himself, to understand the work. But if the builder can provide a

week-by-week breakdown of activities, everyone can understand what tasks will be done

when, what the priorities are, and ask meaningful questions and clarify assumptions.

From the PM's perspective, a good schedule gives a clearer view of the project, flushes

out challenges and oversights early, and increases the odds that good things will happen.

The larger and more complex the project, the more important schedules are. On larger

projects, there are more dependencies between people, and decisions and timings have

greater odds of impacting others. When you have a handful of people working on a small

team, the odds of people recognizing problems in each other's work are much higher.

THE TRUTH ABOUT SCHEDULES 25

Schedule slips on small teams aren't good news, but, in such a case, a half-day slip

represents an additional half-day of energy for three people only, so recovery is possible.

Someone can stay late one night, or, if necessary, the team can all come in together and

help make up the time. On a larger project, with dozens or hundreds of people and

components, a one-day slip can quickly cascade and create problems in all sorts of

unforeseen ways, which is often beyond a team's point of recovery. Either way, big team

or small, schedules give managers and bean counters the opportunity to ask questions,

make adjustments, and help the team by surfacing and responding to issues as they arise.

With these three purposes in mind, it's easy to see that perfect schedules don't solve all of

the problems that projects have. A schedule cannot remedy bad design or engineering

practices, nor can it protect a project from weak leadership, unclear goals, and poor

communication. So, for as much time as it takes to create schedules, they are still just lists

of words and numbers. It's up to someone to use them as a tool for managing and driving

the project. With this in mind, it's time to bring out the big vocabulary and explore

software methodologies—the heavy machinery of project management.

Silver bullets and methodologies
There are many different systems for how to plan and manage the development of

software. These systems are often called methodologies, which means a body of practices

aimed at achieving a certain kind of result. Common software methods include the

waterfall model, spiral model, Rapid Applications development, Extreme Programming,

and Feature-driven development. All of these methods attempt to solve similar

organization and project management problems. They each have strengths and

weaknesses, and it takes knowledge and experience to decide which one is right for what

kind of project.

But my goal in this chapter, and in this book, isn't to compare different methodologies.

Instead, I believe there are concepts that underlie them all that need to be mastered in

order to succeed with any methodology. In all cases, methodologies need to be adjusted

and adapted to fit the specifics of a team and a project, which is only possible with

knowledge that is deeper than the methodologies themselves. So, if you can follow the

underlying ideas in this chapter and book, your odds of being effective will increase,

independent of which methodology you're using. I'll explain aspects of certain methods

as needed to clarify points, but you'll have to look elsewhere if you're methodology

shopping.2

2 You can find a good comparative discussion of traditional and agile methods for software devel
opment in Balancing Agility and Discipline:A Guide for the Perplexed, by Barry Boehm and Richard
Turner (Addison-Wesley, 2003).

26 CHAPTER TWO

Although methods for software development are important, they are not silver bullets.

The worst thing is to blindly follow a set of rules that are clearly not working, simply

because they show up in some famous book or are promoted by a well-respected guru.

Often, obsessing over the process is a warning sign of leadership trouble: it can be an

attempt to offload the natural challenges and responsibilities managers face in

bureaucratic procedures that cloud the need for real leadership action. Perhaps more

devastating to a team is that methodology fixation can signal what is truly important to

the organization. As Tom DeMarco writes in Peopleware (Dorset House, 1999):

The obsession with methodologies in the workplace is another instance of the high-

tech illusion. It stems from the belief that what really matters is the technology....

Whatever the technological advantage may be, it may come only at the price of a

significant worsening of the team's sociology.

By focusing on method and procedure, instead of building procedures to support people,

projects start the scheduling process by limiting the contributions of individuals. They can

set a tone of rules and rule following, rather than thinking and rule adjusting or rule

improving. So, be very careful of how you apply whatever methodology you use: it

shouldn't be something inflicted on the team.3 Instead, it should be something that

supports, encourages, and assists the team in doing good work (see Chapter 10 for advice

on process).

The use of a particular methodology is never the sole reason for a project making or

missing its dates. Instead, there are factors that impact all projects, and project managers

have to understand them before any scheduling work is ever done. But before we talk

about that, we need to cover the components of a schedule.

What schedules look like

There is one basic rule for all schedules: the rule of thirds. It's a rough estimation and

back-of-the-envelope thing, but it's the simplest way to understand schedules. If you are

experienced with scheduling, prepare to cringe—I'm oversimplifying the entire process.

I'm doing this to provide the simplest footing to explain what tends to go wrong, why it

happens, and what can be done about it.

Here's how the rule of thirds works. Break the available time into three parts—one for

design, one for implementation, and one for testing. Depending on the methodologies

you use, these kinds of work will be called different things, but all methodologies have

time dedicated to these three activities. On any given day, or any given hour, you're

3 See Watts S. Humphrey's Managing the Software Process (Addison-Wesley Professional, 1989) for
coverage of defining, understanding, and managing software process change.

THE TRUTH ABOUT SCHEDULES 27

figuring out what should be done (designing), actually doing it (implementing production

code), or verifying, analyzing, and refining what's been done (testing).

As the rule goes, for every day you expect to write production code, a day should be

spent planning and designing the work, and a day should be planned to test and refine

that work (see Figure 2-1). It's the simplest thing in the world, and it's an easy way to

examine any existing schedule or to start a new one from scratch. If the total amount of

time isn't roughly divided into the three kinds of work, there should be well-understood

reasons why the project demands an uneven distribution of effort. Imbalances in the rule

of thirds—say, 20% more time dedicated to testing than implementation—are fine as

long as they are deliberate.

FIGURE 2-1. The plain-vanilla rule-of-thirds project schedule.

Consider a hypothetical web development project: if you're given six weeks to launch it,

the first step should be to divide that time roughly into thirds, and, using those divisions,

make calculations about when work can be completed. If this doesn't provide enough

time to do the work expected at a high level, something is fundamentally wrong. Either

the schedule needs to change, or the amount of work expected to be completed needs to

be reduced (or any expectations of quality need to be lowered). Trimming from the

testing time will only increase the odds that the time spent actually writing code will be

misguided or will result in code that is harder to manage and maintain. The rule of thirds

is useful in that it forces the zero-sum nature of projects to surface. Adding new features

requires more than just a programmer implementing them—there are unavoidable

design and testing costs that someone has to pay. When schedules slip, it's because there

were hidden or ignored costs that were never accounted for.

Piecemeal development (the anti-project project)

It's worth considering the simplest case possible: there is no project. All work is done on a

piecemeal basis—requests come in, they are evaluated against other work, and then they

are put into the next available slot on the schedule. Some development teams, web site

developers, or IT programming departments work in much this way. These organizations

rarely make investments or commitments in large increments. Agile methods (discussed

28 CHAPTER TWO

shortly) are often recommended to these teams as the most natural system for organizing

work because these methods stress flexibility, simplicity, and expectations of change. If

you work on several small assignments (not projects) at a time, you will have to

extrapolate from the project-centric examples I use in this book.

However, the rule of thirds still applies to these situations. Even if each programmer is

working alone on small tasks, he is probably spending about one-third of his total time

figuring out what needs to be done, one-third of his time doing it, and one-third making

sure it works properly. He might jump back and forth between those uses of time every

few minutes, but as a rough way to understand any kind of work, the rule of thirds

applies at any scale.

Divide and conquer (big schedules =many little
schedules)

If you examine most software development methodologies, you can see the outlines of

the rule of thirds. The specific goals and approaches used to design or implement things

may be very different, but at the highest level, the desired results are similar.

Where it gets complex is on larger or longer projects, where schedules are divided into

smaller pieces, with each piece having its own design, implementation, and testing time.

Extreme Programming (known as XP) calls these pieces iterations; the spiral model calls

them phases; and some organizations call them milestones. While XP implies that these

chunks of time are only a few weeks, and the spiral model implies that they are months,

the fundamental idea is the same: create detailed schedules for limited periods of time.

The more change and project volatility that is expected, the shorter each milestone

should be. This lowers the amount of overall risk in the schedule because the master plan

has been divided into manageable pieces. Those breaks between chunks of the schedule

provide natural opportunities to make adjustments and improve the chances that the

next milestone will more accurately direct its work. (We'll discuss how to do this in

Chapter 14.)

Agile and traditional methods

XP and other agile methods assume the future is always volatile, so they bet on processes

that incorporate easy direction changes. Projects that have very high production costs

(say, building a skyscraper, a video game console, or an embedded operating system) go

the other way and invest heavily in planning and designing activities. It can be done, but

everyone has to commit to the decisions made during planning, and the prohibitive cost

for changes tends to be the only way that happens.

THE TRUTH ABOUT SCHEDULES 29

Most software development projects are somewhere in the middle. They have some

initial planning, but to help manage future volatility of requirements and customer

demands, the work is divided into phases that have allocated time for design,

implementation, and quality assurance. If a new issue arises, it can be considered for the

current phase or put in the bucket of work to be properly investigated and understood

during the next phase.

For most projects, that initial planning time is used to capture enough information from

customers and business folks to define how many phases are needed and what the focus

should be for each one (see Figure 2-2). Depending on the larger plan, each phase might

dedicate more time to design or test. A phase could be divided into two smaller phases

(approaching a more agile style of development), or two phases could be combined

together (approaching more monolithic development). But in all cases, time should be

allocated between phases to take advantage of what has changed. This includes

responding to problems that arose during the previous phase, which couldn't be

addressed fully during that phase.

Xni-fiaJ />/a.nr)ir>$

FIGURE 2-2. A big project should be a sequence ofsmaller projects.

That's as far as I'm going to go into high-level scheduling methodology. Chapters 14 and

15 will cover how to manage a project through the entire schedule, but they will focus on

management and leadership perspectives—not on the details of how you've applied a

30 CHAPTER TWO

particular methodology. If you could follow the last few paragraphs (even if you don't

completely agree with the points made in them), then the advice in Chapters 14 and 15

should be relevant and useful, regardless of how you've organized or planned your

project.

Anyway, I apologize to any development veterans who passed out or became ill during

this section. Now that it's over, I promise that this lightweight and simple view of

scheduling is almost all you'll need in order to understand the concepts in the rest of the

chapter.

Why schedules fail
Project schedules are the easy scapegoats for everything that can possibly go wrong. If

someone fudges an estimate, misses a requirement, or gets hit by a bus, it's the schedule

(and the person responsible for it) that catches the blame. If the nation's power supply

were to go out for 10 days, or the team's best programmers were to catch the plague,

invariably someone would say, "See, I told you the schedule would slip" and wag her

finger in the schedule master's face. It's completely unfair, but it happens all the time. As

much as people loathe schedules, they still hold them up to an unachievable standard.

Even the best schedulers in the world, with the smartest minds and best tools at their

disposal, are still attempting to predict the future—something our species rarely does

well.

But if a team starts a project fully aware of the likely reasons schedules fall apart and

takes some action to minimize those risks, the schedule can become a more useful and

accurate tool in the development process.

Shooting blind from very, very far away

If a schedule is created during initial planning, hundreds of decisions that may impact the

schedule have yet to be made. There will be issues and challenges, which no one can

foresee, and there is no way an early speculative plan can possibly account for them.

Until requirements are understood and high-level design is well underway, a project

manager has too little information to make realistic predictions. Yet, often a rough-cut

schedule is created with made-up numbers and wild speculations, and this straw man is

handed to the team under the guise of a believable project plan. Often, people fall victim

to the precision versus accuracy trap: an impressive-looking schedule with specific dates

and times (precision) isn't necessarily close to reflecting reality (accuracy). Precision is

easy, but accuracy is very difficult.

THE TRUTH ABOUT SCHEDULES 31

However, it is true that all projects and schedules have to start somewhere. A shot in the

dark can be used to energize a team and put some boundaries in place. It can begin a

process of investigation to flesh out schedules and raise and answer important questions.

But if an unverified and unexamined sweeping speculation is used as the basis for a

schedule—without further refinement—great risks await. There is strong evidence that it

is difficult for anyone to estimate the amount of time required early on in a project.

Barry Boehm, in his 1988 essay on software engineering,4 found that schedule errors

scale in relation to how early in the project schedule estimation is done (as shown in

Figure 2-3). If total schedule estimates are made early, they can be off by as much as

400%, in either direction (I suspect the errors are skewed against us, tending to take

more time than we expect, although his data didn't show this). During design, as more

decisions become clear, the variance narrows, but it's still large. It's only when the projea

is in implementation that the range of schedule estimation becomes reasonable, but even

then, there is still a 20% swing in how accurate scheduling decisions are likely to be.

Project Requirement Vesi$n X/np/emeri'fa.'fion
ini4i&4fon a.najysi$

FIGURE 2-3. The range ofestimation errors during projects (adapted from Boehm's Software Engineering

Economics).

This means that project managers need to understand that schedule estimation grows in

accuracy over time. Schedules demand that attention is paid to them as progress is made,

and that adjustments are made as the project moves forward.

A schedule is a probability

When I was fresh out of college and working on my first few large projects (Windows

and Internet Explorer), high-level schedules would be handed down to my team by

someone much more important than I. Being too junior to have much involvement in

"Understanding and Controlling Software Costs," IEEE Transactions on SoftwareEngineering, vol.
14, no. 10, October 1988, pp. 1462-77; also in Barry Boehm's SoftwareEngineeringEconomics
(Prentice Hall, 1991).

32 CHAPTER TWO

the process, the schedule would be presented one day, and it was my job to apply that

master schedule to the small number of programmers and testers that I worked with.

While we did negotiate on differences between that master schedule and the schedule

generated by my team based on work items,5 that high-level schedule always seemed to

appear out of nowhere. It would descend from above, carefully formatted, broken down

into nice columns of dates and numbers. It was like some artifact stolen from the future.

No matter how cynical we were, for the most part we followed those schedules faithfully.

Despite the mystery of their origins, we had good reason to trust our team leads, and we

were busy enough with our own work not to worry too much about theirs. (In fact, they

often provided basic explanations for those initial top-down schedules, but we were too

busy and too trusting to pay much attention.)

Later on, when scheduling became something I was responsible for, I realized the

unspoken truth about schedules. They are not gifts from the future. There is no magic

formula or science for creating perfect schedules. Despite my youthful perceptions,

scheduling is not an isolated task: it always represents and encompasses many different

aspects of what the project is now and will be later. Schedules are simply a kind of

prediction. No matter how precisely they are drafted or how convincing they appear,

they are just a summation of lots of little estimations, each one unavoidably prone to

different kinds of unforeseeable oversights and problems. Good schedules come only

from a leader or a team that relentlessly pursues and achieves good judgment in many

different aspects of software development. You can't be an expert in one narrow part of

the making of things and ever expect to schedule well.

So, if everyone on the team can agree that the schedule is a set of probabilities, the

problem isn't in the schedule itself—it's in how the schedule is used. If ever a schedule is

shown in a team meeting, or sent around in email, a valid question is this: how probable

is the defined timeline? If no probability is offered (e.g., what the five most likely risks are

and a speculation on the probability of their occurrence), and whoever made the

schedule can't offer explanations as to the assumptions she is making, it should always be

assumed that the schedule is possible, but improbable.6 It should be open to the team to

make suggestions as to what considerations or information can be added or changed in

the schedule to make it more probable.

Schedules based on programmer work items are called bottom-up schedules. Schedules based
on management are called top-down schedules. Typically the difference between them is
negotiated.

Any given schedule is only one of many possible schedules. Depending on which contingencies
(design failures, political revolution, space alien attack, etc.) are included, the timeline is differ
ent. If no possible failures are considered, the schedule cannot be credible. Its creator hasn't
been creative or skeptical enough.

THE TRUTH ABOUT SCHEDULES 33

The secret here is that a schedule doesn't have to be perfect (which is a relief, of course,

because there are no perfect schedules). Schedules need to be good enough for the team

and the leaders to believe in, provide a basis for tracking and making adjustments, and

have a probability of success that satisfies the client, the business, or the overall project

sponsor.

Estimating is difficult

During the design process (covered in Chapters 5 and 6), part of the work for designers,

programmers, and testers is to break down the design into small chunks of work that can

be built. These chunks, often called work items or a work breakdown structure (WBS7),

become the line items in the master schedule for the project. The work items are (fingers

crossed) intelligently distributed8 across the programming team, and by tallying them up,

a schedule is created. Each of these work items has to have an amount of time assigned to

it by the programmer, and on the basis of those estimates, the schedule is built.

By the simplest definition, good work estimates have a high probability of being accurate,

and bad work estimates have a low probability. I don't expect to win any awards for

these definitions, but they do imply at least one useful thing: it's the judgment of team

leaders that defines the bar for a given project. It requires an active process of reviewing

estimates and pushing, leading, and nudging others to get them to the level they need to

be. I think it's smart to openly involve the test/QA team in the estimation process, letting

them participate in the design discussions and ask questions or offer commentary. At a

minimum, this will help them with their own estimates for testing work, which may not

correlate to programming work estimates. Often, QA has the best insight into design

oversights and potential failure cases that others will overlook.

The world is based on estimation

One thing that makes scheduling difficult is that few people enjoy estimating complex

things that they will be held accountable for. It's always fun to brag and make bets about

our skills ("This book/movie/web site stinks: I could make one soooo much better"), but

when we're pressed to step up and deliver—signing our names on a contract detailing

our responsibility—things change. We know that it's entirely possible that whatever we

commit to doing today might be impossible or undesirable to do when that time comes. It

Most texts describe how to create work breakdown structures. I'll touch on this in Chapter 14,
but if you want more, start with http://en.wikipedia.org/wiki/Work_breakdown_structure or Total
Project Control, by Stephen Devaux (Wiley, 1999).

Kent Beck's ExtremeProgramming Explained (Addison-Wesley, 1999) offers a programmer-
directed model for distributing work, where programmers self-select work items. Ideally these
decisions are a compromise between what's best for the project and what's best for the individ
uals on the team.

3H CHAPTER TWO

just might turn out to be more difficult than we thought. Programmers are just like
everyone else and have good reasons to have estimation anxiety. By saying that

something can be done in a certain amount of time, they risk being very wrong.

In my experience, even programmers who understand the estimation process and believe

in it, don't like to do it. Part of it is the mismatch of imagination ("How will this work,

given the very limited information I have?") with temporal precision ("Tell me exactly

how many hours this will take to do."). But sympathy here should be limited: everyone

who works in engineering and construction has the same kind of challenge, whether it's

building skyscrapers, remodeling a kitchen, or launching spacecraft to land on other
planets. From reading about how these folks estimate things, it doesn't seem that their

challenges or techniques are fundamentally different from what web developers and

software engineers face. The primary difference is in how much time they are given to

generate estimates and how disciplined they are in the use of that time (Chapters 5 and 6

will discuss this in detail).

Good estimates come from good designs

To the credit of programmers everywhere, the most important thing I've learned about

good estimates is that they only come from credibledesigns and requirements. Good
engineering estimates are possibleonly if you have two things: good information and

good engineers. If the specsare crap, and a programmer is asked to conjure up a number
based on an incomprehensible whiteboard scribbling, everyone should know exactly

what they're getting: a fuzzy scribble of an estimate. This means that good estimates are

everyone's business, and it should be the work of the entire team—projectmanagers and
designers in particular—to do what they can to support engineers in making credible
estimates. If estimating feels like a chore, or if team leaders aren't invested in the process,

don't expect reliable or probable estimates.

If leaders acknowledge weak estimates in the schedule and are comfortable with greater

schedule risk, there's nothing wrong with weak estimates. On smaller, faster projects,

rough estimatesmay be all that the projectneeds. Requirements may change often, and
the nature of the business might demand more flexibility. There's nothing wrong with

low-quality estimates, provided no one is confusing them with high-quality ones.

A handy technique I found was that whenever a programmer balked at giving an

estimate, I'd ask, "What questions can I answer that would make you more confident

about giving an estimate?" By getting him to be specific, I gave him the opportunity to

confront the fear or frustration he might feel, which allowed me to help solve his

problem. Of course, I'd have to help find answers to his questions, and possiblydebate
the issues I felt it was his job to investigate, but at least we'd be talking about getting

better estimates.

THE TRUTH ABOUT SCHEDULES 35

Here are some additional ways to ensure good estimates:

• Establish baseline confidence intervals for estimates. A guess = 40% confidence
in accuracy. A good estimate = 70%. A detailed and thorough analysis = 90%. Team
leaders need to agree on how accurate they want estimates to be, as well as the
amount of time programmers will have in order to make them and how the risks of

missedestimateswill be managed. Don't fixate on the numbers: just use them to help
make the quality of estimates concrete. A 90% estimate should be on the nose 9 times

out of 10. If you decide to ask your team to improvethe quality of estimates, you must
match this request with more time for them to do so.

• Lead programmers must set the bar for quality estimations by asking good
questions and taking wise approaches that the team can emulate. Do what

ever is necessary to kill the motivation for snide comments or backpedaling (e.g.,
"Don't hold me to this," "It's just a guess," etc.). Find out the legitimateneeds they
have for delivering good estimates, and back it up with the time needed to match the
estimate-quality goals.

• Programmers should be trusted. If your brain surgeon told you the operation you
need takes five hours, would you pressure him to do it in three? I doubt it. Some
times, pressure has to be applied to keep people honest—but only as a balancing mea
sure (the canonical need for this is a programmer who giveshigh estimates for things
she doesn't like,and low ones for thingsshe does). On occasion, obtainingmultiple
estimates (fromtwo different developers) can be one way to do a sanity check.

• Estimates depend on the programmer's understanding of the project goals.
Estimates are based on a programmer's interpretation of not only the design specifica
tions (ifthey exist), but also the project'sgoals and objectives. In GeraldWeinberg's
The Psychology ofComputer Programming (Dorset House, 1971), he records how lack of
clarity about higher-level objectives has a direct influence on the low-level assump
tions programmers make. As clear as the technological problem might be, the pro
grammer's approach to solvingit might change dramaticallydepending on the high-
level intentions of the entire project.

• Estimates should be based on previous performance. It's a goodhabit for pro
grammers to track their estimates over projects. It should be part of their discussions
with their manager, who should be interested in understanding who on their team is
better at estimating what. Extreme Programminguses the term velocity to refer to a
programmer's (or team's) probable performance, based on previous performance.9

• Specification or design quality should be to whatever point engineering
needs to make good estimates. This is a negotiation between projea management
and programmers.The higher the quality of estimatesdesired, the higher the quality
the specifications should be. We'll talk more about good specifications in Chapter 7.

9 SeeKent Beckand Martin Fowler'sPlanning Extreme Programming (Addison-Wesley, 2002), pp.
60-62.

36 CHAPTER TWO

• There are known techniques for making better estimates. The most well-
known technique is PERT,10 which tries to minimize risks by averaging out high,
medium, and low estimates for work. This is good for two reasons. First, it forces

everyone to realize estimates are predictions, and that there is a range of possibleout
comes. Second, it gives project managers a chance to throttle how aggressive or con

servative the schedules are (more weight can be applied toward the low or high

estimates).

The common oversights

While good estimates go a long way toward improving schedules, many factors that

impaa schedules cut across line items. The trap this creates is that despite how perfect all

the estimates for work items are, the real schedule risks are the things not written down.

While it's true that the odds of contracting the plague are slim in most parts of the world,

the probability of an important engineer getting the flu or going on vacation is pretty

high. There is a common set of these schedule oversights that all project managers need
to be familiar with. The trouble is that it's often only after you've been burned by one

oversight that you're willing to look out for it in the future. This is why project

management, and schedule management in particular, requires experience to become

proficient. There are too many differentways to fail, and no way to practice looking for

them, without being responsible for their consequences.

Here's my pet list of questions that have helped me to catch potential schedule problems

early on. Most of these came from asking questions about what went wrong after a

project was completed, and trying to find a question someone could have asked early on
that would have avoided the problem. (What was missing? What wasn't accounted for?

What would have made a difference or would have enabled me to take corrective

action?)

• Were sick days and vacation time for all contributors included in some form in the

schedule?

• Were holiday seasons, or other times of year with major distractions, factored in (e.g.,
from Thanksgiving to Christmas in the U.S., summers in Europe)? Major deadlines are

extremely hard to hit during these times.

• Did individuals have access to the schedule, and were they asked to report regular

progress (in a non-annoying way)?

• Was someone watching the overall schedule on a daily or weekly basis? Did this per
son have enough authority to ask good questions and make adjustments?

10 PERTstands for Program Evaluation and Review Technique. The standard formula is: (best esti
mate + (4x most likely) + worst estimate) / 6. However, there are zillions of variations and the
ories for how best to compute weighted estimates.

THE TRUTH ABOUT SCHEDULES 37

• Didthe team feelownership and commitment to the schedule? If not, why? Didthe
team contribute to the definition of the schedule and the work to be done, or was it
handed down to them?

• Did team leaders add more feature requests than they helped eliminate? Did team
leadersever say no to new work and providea reasonable philosophyto the team for
how to respond to new (late) requests?

• Were people on the team encouraged to and supported in saying no to new work
requests that didn't fit the goals and the vision?

• What probabilities were used in making estimates? 90%? 70%? 50%? Was this

expressed in the master high-level schedule? Was the client/VP/customer aware of

this? Was there discussion of another proposal that took more time but came with a
higher probability?

• Were there periodic moments in the schedule when scheduleadjustmentsand renego
tiations could take place by leaders and management?

• Did the schedule assume fewer working hours over holiday seasons? (In the U.S.,
Thanksgiving to Christmas is often a lowproductivity time.) Are any highlyprobable
disruptiveweather events weighed into the schedule (for example, blizzards in Chi
cago, tornados in Kansas, sun in Seattle)?

• Were the specifications or designplans good enough for engineering to make good
work estimates?

• Was engineering trained or experienced in making good work estimates?

The snowball effect

Themost depressing thing about the previous list is that even if you get most of it right,
because of how interdependenteachcontribution is to a schedule, it's stilleasyfor
schedules to slip.Each decisionthe team makes, from design choices to estimations, is the
basis for many of the decisions that follow. An oversight early on in the process that is
discovered later on willhave an amplified impact on the project. This compounding
behavior of schedules is easy to underestimate because the cause and effect aren't often

visible at the same time (you may see the effect way after the cause occurred). In the
worst cases, when severalmajor oversights occur, the odds of a schedule holding together
are slim to none (see Figure 2-4).

And of course, this gets even harder. The way probability works is that the likelihood of a

series of independent events occurring is the multiplication of the likelihood of each

individual event (alsoknown as compound probability). So, if the probability of you
finishing this chapter is 9 out of 10 (9/10), and the probabilityof you finishing the next
one is 9/10, the total probability of you finishing both chapters isn't 9/10: it's 81/100.

38 CHAPTER TWO

U)eaJc or no vision document

X
Poorfy tori'f'fen or no specs

X
Pooror a,^ressive toorM es-fima-fes

X
bio bvcL^e-f -for in-fe^rcL-fion

X
bio bvcl^e-f -for UX iterations

A prayer o-fa. schedule

FIGURE 2-H. The snowball effect.

This means that if your team is 90% probable to makes its dates each week, over time the

odds of a slip happening continually increase. Probability is cold and heartless, and it

helps to remind us that entropy is everywhere and is not the friend of projects or their

managers.

What must happen for schedules to
work

Now that we understand why schedules are so difficult to maintain, I can offer advice on

how to minimize the risks and maximize the benefits of any project schedule. These

approaches and behaviors cut across traditional roles or backgrounds, which I think

reflects the true nature of scheduling. Because the schedule represents the totality of the

project, the only way to use schedules effectivelyis to understand something about all of

the things that must happen in order to make the project successful. It's an

interdisciplinary task, not just an engineering or management activity.

• Milestone length should match project volatility. The more change that is
expected, the shorter the milestones should be. Small milestones set the team up for
easier mid-game adjustments. This gives management shorter intervals between
reviews, and it reduces the risks of making changes. The team can be prepped to

expect change at milestone crossovers, so they will expect change instead of resist it.

• Be optimistic in the vision and skeptical in the schedule. A major psychological
challenge for scheduling is to make use of proper skepticism, without deflating the
passion and motivation of the team. Unlike the creation of a vision document, where
optimism about the future must reign, a schedule has to come from the opposite per
spective. The numbers that are written down to estimate how long things should take
require a brutal and honest respect for Murphy's Law ("What can go wrong will go
wrong"). Schedules should not reflect what might happen under optimal conditions.
Instead, a good schedule declares what will happen—despite several important things
not going as expected. It's important to have the test/QA team involved in scheduling
because they lend a naturally skeptical and critical eye to engineering work.

THE TRUTH ABOUT SCHEDULES 39

Bet on design. The processof designis the best insurance against ignorance and
unexpeaed challenges. Better design practices are the only way to improve the ride of
the team through implementation and other phases. Design skillsare not the same as
implementation skills, and the strongest or fastest coderwon't necessarily be the best
design thinker or problem solver. Good design process isn't taught in many computer
science programs, despitehow essential it is to thinking about and approachingengi
neering projects. See Chapters 5 and 6 for more on this topic.

Plan checkpoints for add/cut discussions. Schedules should include short periods
of review where leaders can review current progress and account for new information
or customer feedback. Thisshould be built into the master schedule and be an explicit
part of any project contract. In these reviews, existing work items can be cut, or new
ones added, as dictated by leadership's analysis of the current situation. Natural points
for these reviews are in between phases, or on a limited basis, at the end of each

design or implementation phase, but they can take place anytime there are serious
concerns or obvious discrepancies between plan and reality. The goals of these discus
sions should be to return the project to sanity, refresh the schedule, reprioritize items,
and start the next part of the schedule with clarity and beliefin what comesnext (see
Chapters 14 and 15).

Inform the team about planning philosophy. Whateverscheduleapproach or
technique is used, it should be commonknowledge to the team. If each programmer
and tester has a basic understanding of how schedules work and the particularstrat
egy project management is using for the current project, they'll be able to ask better
questions and be more likely to understand and believe in what's being planned.

Gauge the team's experience with the problem space. One of the magicvari
ables in scheduling is how experienced the teamiswith the kind ofproblems it isbeing
asked to solve. If the teamisbuilding a database-driven website, and five of the sixpro
grammers have done thiskindofworkseveral times before, it's fairto assume they'llbe
better at designing and estimating work than a team that has never done it before. This
should factor heavily into how aggressive or conservative a schedule can be.

Gauge the team's confidence and experience in working together. Even
though estimates come from individual programmers, the programmers are working
togetheras a unit to buildone complete thing. Evena team of veteran superstarpro
grammers will not be as efficient as expected if they haven't worked with each other
before (or faced difficult challenges together). It should be a red flag if ever a newly
formed team is asked to work on a large, risky project or is asked to commit to an
aggressive schedule.

Take on risks early. If you know that Sally has the most complex component, deal
with those challenges up front in the schedule. The bigger the risk, the more time
you'll want on your side in dealing with it. If you don't address risks until later on in
the schedule, you'll have fewer degrees of freedom in responding to them. The same
goes for political, organizational, or resource-related risks. We'll talk about work item

management, at the development pipeline, in Chapter 14.

HO CHAPTER TWO

Summary
• Schedules serve three functions: allowing for commitments to be made, encouraging

everyone to see her work as a contribution to a whole, and enabling the trackingof
progress. Even when schedules slip, they still have value.

• Bigschedules should be divided into small schedules to minimize risks and increase
the frequency of adjustments.

• All estimates are probabilities. Because schedules are a collection of estimates, they are
also probabilities. This works against schedule accuracy because probabilities accumu

late (80%x80% = 64%).

• The earlier that estimates are made, the less accurate they are. However, rough esti

mates are the only way to provide a starting point for better ones.

• Schedules should be made with skepticism, not optimism. Invest in design to shed

light on assumptions and generate reliable confidence.

Exercises

A. If you use a daily planner, take a look at yesterday's schedule. How many of the
events started on time? Of the ones that started late, how many were your fault ?

B. Who do you know that is always late? How does this change how people perceive
him? Would you prefer he were less optimistic about how long it will take him to do
things? Does he suffer in any way for being late? What motivations are there for him
to change his habits?

C. Dig up the original schedule from your last project. Compare it to what actually
happened. What would you have done differently knowing what you know now?
How can you use this information on your next project?

D. Spend a day where you start and finish everything exactly on time. Afterward, ask if it
was worth the effort. Why or why not?

E. Find a friend who works in a different field than you. How does she schedule her

projects? What tools does she use to estimate how long work will take? What mistakes
are common in her field, and what can you learn from how she handles them? (If you

have no friends, building construction, filmmaking, and wedding planning all make

for interesting comparisons to study.)

F. The rule of thirds is a rough guideline, and there are exceptions. What kinds of
projects require a different division of time? Could there be a project that is dominated
by just one of these three kinds of work?

G. Many projects have significant dependencies on work outside your control. What
techniques can you use when building a schedule to reduce the risk of those
dependencies? How should you engage with the people responsible to build a
schedule that makes both teams successful?

THE TRUTH ABOUT SCHEDULES HI

H. Yourmanager is pushing for a specific date and yet your experience tells you the date
is ridiculous. Howcan you use a schedule to explain your concerns to a manager?

I. If the common oversights in this chapter affect most projects, what cana smart project
managerdo to: a) make a team awareof them; or, b) rewardpeoplefor mitigating
them?

12 CHAPTER TWO

tmi

M

CHAPTER THREE

How to figure out what to do

ew agree on how to plan projects. Often, much time during planning is wasted getting
people to agree on how planning should be done. I think people obsess about planning

because it's the point of contact for many different roles in any organization. When major

decisions are at stake that will affect people for months, everyone has the motivation to

get involved. There is excitement and new energy but also the fear that if action isn't

taken, opportunities will be lost. This combination makes it all too easy for people to

assume that their own view of the world is the most useful. Or worse, that it is the only

view of the world worth considering.

"The hardest single partof building a software system is deciding what to build.
Noother part ofthe conceptual work is as difficult in establishing the detailed
technical requirements, including the interfaces to people, to machines, and to

other software systems. Noother partof the work so cripples the results if done

wrong. Noother part is more difficult to rectify later. Therefore, the most

important function that the software builder performs forthe client is the

iterative extraction and refinement ofthe product requirements."

—Fred Brooks

It's not surprising then that the planning-related books in the corner of my office disagree

heavily with each other. Some focus on business strategy, others on engineering, and a
few on understanding customers. But more distressing than their disagreements is that

these books fail to acknowledge that other approaches even exist. This is odd because

none of these perspectives—business, technology, customer—can ever exist without the

others. More so, I'm convinced that successin project planning occurs at the intersections

in these different points of view. Any manager who can see those intersections has a

large advantage over those who can't.

So, this chapter is about approaching the planning process and obtaining a view of

planning that has the highest odds of success. First, I need to clarify some vocabulary and

concepts that different planning strategies use (it's dry stuff, but we'll need it for the fun

chapters that follow). When that is out of the way, I'll define and integrate these three

different views, explore the questions good planning processes answer, and discuss how

to approach the daily work to make planning happen. The following chapters will go into

more detail on specific deliverables, such as vision documents (Chapter 4) and

specifications (Chapter 7).

Software planning demystified
A small, one-man project for an internal web site doesn't require the same planning

process as a 300-person, $10 million projea for a fault-tolerant operating system.

Generally, the more people and complexity you're dealing with, the more planning

F

*W CHAPTER THREE

structure you need. However, even simple, one-man projects benefit from plans. They

provide an opportunity to review decisions, exposeassumptions, and clarify agreements

between people and organizations. Plans act as a forcing function against all kinds of
stupidity because they demand that important issues be resolved while there is time to

consider other options. As Abraham Lincoln said, "If I had six hours to cut down a tree,

I'd spend four hours sharpening the axe," which I take to mean that smart preparation

minimizes work.

Project planning involves answering two questions. Answering the first question, "What

do we need to do?" is generally called requirements gathering. Answering the second

question, "How will we do it?" is called designing or specifying (see Figure 3-1). A

requirement is a carefully written description of a criterion that the work is expected to

satisfy. (For example, a requirement for cooking a meal might be to make inexpensive

food that is tasty and nutritious.) Good requirements are easy to understand and hard to

misinterpret. There may be different ways to design something to fulfill a requirement,

but it should be easy to recognize whether the requirement has been met when looking

at a finished piece of work. A specification is simply a plan for building something that

will satisfy the requirements.

Requirement l>esi^n/Speci-fica.tion Xmplementation

\jdhat do kJe need to do? Moto kJi'// noe do it? HE3
FIGURE 3-1. Aninsanelysimplebuthandyviewof planning. Ifyou don'tknow whatyou need to do, it's

too early to figure out how to do it.

These three activities—requirements gathering, designing/specifying, and

implementing—are deep subjectsand worthy of their own books (see the Appendix and
the Annotated Bibliography). I'll cover the first two from a project-level perspective in

the next few chapters, and implementation will be the focus later on in this book

(Chapters 14 and 15).

Different types of projects

Several criteria change the nature of how requirements and design work are done. I'll use

three simple and diverse project examples to illustrate these criteria:1

• Solo-superman. In the simplest project, only one person is involved. From writing
code to marketing to business planning to making his own lunch, he does everything
himself and is his own source of funding.

1 For another comparison of different types of software projects, see http://www.joelonsoftware.com/
articleslEiveWorlds.html.

HOW TO FIGURE OUT WHAT TO DO H5

• Small contract team. Afirmof 5 or 10programmers and 1 manager is hired by a cli
ent to build a web site or software application. They draft a contract that defines their
commitments to each other. When the contract ends, the relationship ends, unless a
new contract/project is started.

• Big staff team. A 100-person team employed by a corporation begins work on a new
version of something. It might be a product sold to the public (aka shrink-wrap) or
something used internally (internalware).

These three project types differin team size, organizational structure, and authority
relationships, and the differences among them establish important distinctions for how

they should be managed. So,while your projectmight not exactly match these examples,
they will be useful reference points in the following sections.

How organizations impact planning

With the three project types in mind, we can examine the basic criteria for project

planning. At any time in a project, there are basic questions that everyone should know

the answers to. Youmight not always like the answers, but you and your team should

know what they are. Most planning frustrations occur when there's disagreement or
ignorance about these issues.

• Who has requirements authority? Someone has to define the requirements and
get them approved by the necessary parties (client or VP). In the solo-superman case,
this is easy: superman will have all of the authority he wants. On a contract team,

there will be a client who wants strong control over the requirements and possibly the
design. Lastly, a big staff team may have committeesor other divisions in the corpora
tion who will need to be served by the work (and whose approval in some way is
required). There may be different people with high-level requirements authority ("It
will be a sports truck") and low-levelrequirements authority ("It will get 20 mpg and
have 4-wheel drive").

• Who has design authority? Similar to requirements, someone has to define the
design of the work itself. The design is different from the requirements because there
are always many different possible designs to fulfill a set of requirements. Designs, also
like requirements, are often negotiated between two or more parties. One person or
team might be responsible for driving the design process and developing ideas
(designer), and another team provides guidance and feedback on the first party's work
(VP). Note that because design skill is distributed in the universe independent of politi
cal power, people granted design authority might not be people with much design
talent.

• Who has technical authority? Technical authority is defined by who gets to choose
which engineering approaches are used, including programming languages, develop
ment tools, and technical architecture. Many of these decisions can impact require
ments, design, and budget. The difference between technical decisions and design

H6 CHAPTER THREE

decisions is subtle: how something behaves and looks often has a lot to do with how

it's constructed. In some organizations, technical authority supercedes requirements

and design authority. In others, it is subservient to them. In the best organizations,

there is a collaborative relationship between all the different kinds of authority.

• Who has budget authority? The ability to add or remove resources to a project can

be independent from other kinds of authority. For example, in the contract team situ

ation, the team might have the power to define the requirements and design, but they

might need to return to the client each time they want more money or time.

• How often will requirements and designs be reviewed, and how will adjust

ments be decided? The answer depends heavily on previous questions. The more

parties involved in requirements, design, and budgets, the more effort will need to be

spent keeping them in sync during the project. As a rule of thumb: the less authority

you have, the more diligent you need to be about reviewing and confirming deci

sions, as well as leading the way for adjustments.

Although I've identified different kinds of authority, it's possible for one person to possess

several or all of them. However, most of the time, authority is distributed across team

leaders. The more complex the distribution of authority is, the more planning effort

you'll need to be effective. In Chapter 16, I'll cover how to deal with situations where

you need more authority than you have. For now, it's enough to recognize that planning

involves these different kinds of power.

Common planning deliverables

To communicate requirements, someone has to write them down. There are many ways

to do this, and I'm not advocating any particular method. What matters most is that the

right information has been captured, the right people can easily discuss it, and good

commitments are made for what work should be done. If the way you document

requirements does all this for you, great. If it doesn't, then look for a new method with

these criteria in mind.

For reference purposes, I'll mention some of the common ways to document

requirements and planning information. If nothing else, knowing the common lingo

helps translate between the various methods used by different organizations. You'll find

some teams document the requirements informally: "Oh, requirements...just go talk to

Fred." Others have elaborate templates and review procedures that break these

documents into insanely small (and possibly overlapping) pieces owned by different

people.

• Marketing requirements document (MRD). This is the business or marketing

team's analysis of the world. The goal is to explain what business opportunities exist

.and how a project can exploit those opportunities. In some organizations, this is a

HOW TO FIGURE OUT WHAT TO DO H7

reference document to help decision makers in their thinking. In other organizations,
it is the core of projea definition and everything that follows derives strongly from it.
MRDs help to define the "what" of a project.

Vision/scope document. A vision document encapsulates all available thinking
about what a project might be into a single composition. If an MRD exists, a vision

document should inherit and refer heavily to it. A vision document defines the goals
of a project, why they make sense, and what the high-level features, requirements, or
dates for a project will be (see Chapter 4). Vision documents directly define the "what"
of a project.

Specifications. These capture what the end result of the work should be for one part
of the project. Good specifications are born from a set of requirements. They are then
developed through iterative design work (see Chapters 5 and 6), which may involve
modifying/improving the requirements. Specs are complete when they provide a
workable plan that engineering can use to fulfill requirements (how much detail they
must have is entirely negotiable with engineering). Specifications should inherit

heavily in spirit from vision documents. Specifications define the "how" of a project
from a design and engineering perspective. (In most agile methods, use cases and story
cards roughly translate into requirements and specifications).

Work breakdown structure (WBS). While a specification details the work to be

done, a WBS defines how a team of engineers will go about doing it. What work will
be done first? Who will do it? What are all of the individual pieces of work and how
can we track them? A WBS can be very simple (a spreadsheet) or very complex
(charts and tools), depending on the needs of the project. Chapters 7 and 13 will touch
on WBS-type activities. WBS defines the "how" of a project from a team perspective.

(Some agile methods use task boards, showing all active story cards, which roughly
translate into a WBS.)

Approaching plans: the three
perspectives

You may have noticed how each deliverable mentioned represents one of two

perspectives on the project: business or engineering. On many projects, these two views

compete with each other. This is a fundamental mistake. Planning should not be a binary

or either/or experience. Instead, it should be a synthesis of what everyone can contribute.

To make this happen, a project manager must recognize that each perspective contributes

something unique that cannot be replaced by more of something else (i.e., no amount of

marketing strategy will improve engineering proficiency, and vice versa). For good

results, everyone involved in project planning must have a basic understanding of each

perspective.

H8 CHAPTER THREE

WARNING

The following coverage of planning is industrial strength. If you see questions or

situations that don't apply because of the size of your team or scope of your project,

feel free to skim it. I don't expect everything here will apply to any single project.

However, I'm providing value not only for your current project, but also for those

that follow. There are many questions here that will prove useful in the long run,

even if some don't apply to what you're working on today.

The business perspective

The business view focuses on things that impact the profit and loss (P&L) accounting of

an organization. This includes sales, profit, expenses, competition, and costs. Everyone

should understand their P&L: it's what pays their salaries or their contracts. When

engineering teams are unaware of how their business works, many decisions made by

management will appear illogical or stupid. Thus, it's in the interest of whoever is

responsible for business planning to help others understand why the projea exists from a

business standpoint. In the tech sector, people with job titles like business analyst,

marketing, business development, product planner, or senior manager represent the

business perspective.

Some projects have multiple business perspectives. If you work for a firm contracted to

build a database server, you have your firm's business interests to consider, as well as the

business interests of the client you are serving (hopefully they are in line with each

other). The intersection of these perspectives can get complicated; I'm going to keep it

simple here and assume projects are of the big-staff variety. However, it should be easy to

extrapolate the following questions to more complex situations.

A good business perspective means that the team has answers for the following

questions:

• Why is this project needed for our business?

• What unmet needs or desires do our customers have?

• What features or services might we provide that will meet those desires and needs?

• On what basis will customers purchase this product or service? What will motivate

them to do so?

• What will it cost (people/resources)? Over what time period?

• What potential for revenue (or reduced organizational operating costs) does it have?

Over what time period?

• What won't we build so that we can build this?

HOW TO FIGURE OUT WHAT TO DO H9

• Will it contribute to our long-term business strategy or protect other revenue-
generating assets? (Even nonprofits or IT organizations have a business strategy: there
are always bills to pay, revenue to obtain, or revenue-generating groups to support.)

• How will this help us match, outflank, or beat competitors?

• What are the market time windows that we should target for this project?

Those responsible for the business perspective take bold views of the importance of these

questions. They believe that the answers represent the bottom line for the organization

and should strongly influence project decisions. However, the business view doesn't

mean that all projects must be slaves to revenue. Instead, it evaluates projects based on

their contributions to the business strategy. For example, a strategic project might be
essential to the organization but never generate any revenue.

Marketing is not a dirty word

The most unfair criticism of business folks is that they are just "marketers," which is

somewhat of a negative label in the tech sector. I think marketing gets a bad rap. In MBA

terms, there are four Ps that define marketing: product, price, placement, and promotion.
Definingthe product and price is a creativeprocess. The goal is to develop a product

idea—sold for a profit—that matches the needs of the targeted customer. Research,

analysis, and creative work are necessary in order to succeed. Placement, the third P,

regards how customers will obtain the product (through a web site? the supermarket?
the trunk of Fred's car?).

Finally, promotion—what marketing is often stereotyped to mean—is how to spread the
positive word about the product to influential people and potential customers.

Surprisingly, promotion is a small part of a business analyst or product manager's time

(maybe 10-20%). So, marketing plans define much more than what the ads will look like

or what promotional dealswillbe made. Also, note that the four Ps of marketing apply to
almost anything. There is always a product (HR web site), a price (free), a placement
(intranet), and a promotion (email) for it.

But when the business perspective is dealt with alone, it shows only one-third of what's

needed. The quality of a product influences sales, but quality does not come from

marketing.2 Quality comes from successfully designing and engineering something that

satisfies real customer needs. A proposed business plan that centers itself on technological
possibilities (rather than conjectures) will make for good business.

2 Andrew Stellman, a tech reviewer of this book, threatened me with physical violence if I didn't
offer references on software quality, so here are a couple: W. Edwards Deming's Out ofthe Crisis
(MIT Press, 2000) and Philip Crosby's Quality IsFree (Signet Books, 1992).

50 CHAPTER THREE

A project manager, who uses only one perspective and fails, might never understand
what really went wrong. Histendency willbe to work harder within the same perspective

instead of widening the view.

The technology perspective

While I was studying computer science at Carnegie Mellon University, it was common to

talk to professors and students about new products. We'd focus on what components

these new software products used and how they compared against what could have been.

Value was quality of engineering: how much of the latest technologies they used.

Generally, we thought everything sucked. Very few products survived our critiques. We

wondered why the marketplace was packed with mediocrity and disappointment. We'd

even invent geek conspiracy theories to explain the evil decisions, which we thought

were made against engineering purity and thus made little or no sense to us. Often, we'd

focus blame on the marketing departments of these companies3 (not that many of us

understood what marketers did). Even in my first few years in the industry, the same

kinds of conversations took place again and again. Only then there was greater scrutiny

because we were competing with many of the products or web sites that we talked about.

When we looked at the world, we saw technologies and their engineering merits only.

We never understood why poorly engineered products sometimes sold very well or why

well-engineered products sometimes failed to sell at all. We also noticed that engineering

quality didn't always correlate with customer happiness. For these mysteries, we had two

answers. First, it had something to do with the magic powers of evil marketing people.

Second, we needed smarter customers. But we didn't think much about our flawed

conclusions. Instead, we went back to writing code or finding other products to tear to

shreds. I was able to see my view for what it was only after I'd listened to some smart

marketers and some talented product designers.

The technology view places the greatest value on how things should be built. It's a

construction and materials mindset. There is an aesthetic, but it's from the technology

perspective, not from the customer's perspective. There is a bias toward the building of

things, instead of understanding how, once created, those things will help the business or

the customer. In the stereotypical engineering view, a database that satisfies the

engineer's aesthetic is sufficient, even if it's so ugly it makes men cry, no customer can

figure out how to do anything with it, or it fails to meet its sales projections.

As critical as that last paragraph was of technologists, many important questions come

from the technology view only:

3 Faisal Jawdat, a tech reviewer of this book, threatened me with death by sarcasm if I didn't point
out how ironic it is that I then went on to work for Microsoft.

HOW TO FIGURE OUT WHAT TO DO 51

• What does it (the project) need to do?

• How will it work? How will each of the components in it work?

• How will we build it? How will we verify that it works as it's supposed to?

• How reliable, efficient, extensible, and performant are the current systems or ones we
are capable of building? Is there a gap between this and what the project requires?

• What technologies or architectures are readily available to us? Will we bet on any new
technologies that will be available soon but are not available yet?

• What engineering processes and approaches are appropriate for this team and this
project?

• What applicable knowledge and expertise do our people have? What won't they be
working on to work on this project?

• How will we fill gaps in expertise? (Train/hire/learn/ignore and hope the gaps magi
cally go away.)

• How much time will it take to build, at what level of quality?

The customer perspective

This is the most important of all three perspectives. Because the project is made to serve

the customer (and perhaps serve the business, but only through serving the customer), it

follows that the greatest energy should be spent on understanding who those customers

are. This includes studying what the customers do all day, how they currently do it, and

what changes or improvements would be valuable in helping them do what they do.

Without this information, engineering and business are shooting in the dark.

But, sadly, the customer perspective is the weakest in many organizations. It generally

receives the least staffing and budget support. There are fewer people in most

organizations that have been trained in understanding and designing for customers than

their business and technology counterparts. And even when customer experts are hired

(such as user interface designers or usability engineers), they are often restricted to

limited roles in the projea decision-making process and are granted few requirements or
little design authority.

In any case, the customer point of view is built from two different sources: requests and

research. Requests are anything the customer explicitly asks for or complains about. This

kind of information is valuable because the customer has the greatest motivation to

identify these problems ("Yes, my computer explodes whenever I hit the Space bar"), but

it is also problematic because, in most cases, customers are not designers. They often blur

the distinction between problems that need to be solved and specific ways of solving

them. They may explicitly ask for a feature, such as print preview, without describing the

real problem (people throw away too much paper). If the project team can start by

52 CHAPTER THREE

understanding the problem, there may be many ways to solve it that are cheaper or

better than the feature requests. Even skilleddesigners often struggle at designing for

themselves.4

There are two kinds of experts who understand customers and design for them: usability

engineers and product designers. Usability engineers are experts in understanding how
peoplework, and they providemetrics and research to help project teams make good
decisions from day one of project planning. Product designers, or interaction designers,

are people trained in how to take that data and convert it into good designs for web sites
or products. If your organizationis fortunate enough to employthese fine folks, involve
them early on. Ask them to be advocatesfor this point of view. If you're working without
them, you are at a distinct disadvantage to your competitors. Consider hiring someone to

consult and advise on where these efforts would be of the most value.

Without expert help, the project manager must make do on her own. This is possible, but
because it's often the least interesting perspective for folks with engineering backgrounds

and is least understood by senior management, it typically gets less support than the

other points of view. Enough resources and seniority need to be invested in the customer
perspective to balanceout the technology and business ones. Otherwise, surprise: the
customer perspective won't be credible and won't be heard.

The important questions from the customer view include:

• What do people actually do? (Not what we think they do or what they say they do.)

• What problemsdo they have trying to do these things?Where do they get stuck, con
fused, or frustrated?

• What do they need or want to do but aren't able to do at all?

• Where are the specific opportunities to make things easier, safer, faster, or more reli
able for them?

• What design ideas for how to improve how the thing should work—in terms of what
people actually do—have the most potential for improving the customer experience?

• How can those ideas be explored? What prototypes, sketches, or alternatives need to
be investigated to help us understand the potential for the project?

• What core ideas and concepts should the project use to express information to users?

4 This is a deliberately inflammatory remark designedto promote these footnotes. But seriously:
when designersdesignfor themselves, they tend to over-design, perhaps indulging in the free
dom of not having a client to work for.

HOW TO FIGURE OUT WHAT TO DO 53

The magical interdisciplinary view
These three points of view always overlap. Every business consideration has technical

and customer implications (which is the same forall of the other permutations). So,
getting the bestplanning perspective requires laying out eachview on equalfooting and
seeing where the similarities and differences are. Some decisions will need to be made

that favor one perspective overanother, but that shouldn'tbe done by accident. It should
supportan intelligent strategy derived from getting as much value from each perspective
as possible.

Byinvesting time in exploring all three perspectives, it's possible to see opportunitiesfor
smart strategic decisions. It mightbe possible to satisfy someof the top issues or goals
from each of the three perspectives by defining a projecttargeted at where the three
perspectives overlap. Those are areas that have the greatest potential value to the

organization because one effort can simultaneously address business, technology, and
customer goals.

Almost as importantas its strategic planning value, using a Venn diagram (like the one in
Figure 3-2) can defuseperspective biasof engineers or marketers. It helps teams see
overlapping points of view, rather than competing onesonly. Early and oftenduring
project-planning discussions, this diagram or something likeit (e.g., a diagram that
includes a list ofpotential goals from each perspective) canbe used to frame suggestions
made bypeople whohave bias toward oneview oftheproject. When ideas aresuggested,
they can be mapped against this diagram to see how they contribute to all three
perspectives. ThePMplays a key role in making this happen, by proactively usinghis
generalist nature to unify all three views into one.

FIGURE 3-2. The three perspectives.

One way to accomplish this is to establish earlyon that there willalwaysbe great
technological ideas that do not benefit the business or the customer, as wellas greatideas
to helpcustomers that are not viable forthe business or possible with current technology.

51 CHAPTER THREE

Thisgiveseveryone the power to identify one-dimensional ideas and call each other on
them. It also generates respect across perspectives because everyone is forced to realize

that they need to collaborate with people who have knowledge they don't possess in

order to be successful.

But if no effort is made to bring divergent points of view together, the conflicts are rarely

addressed head on. Instead, project-planning meetings become battlefields for attacking

and defending opinions based on these perspective lines (and not on the true merits of

the ideas themselves). Often when I've consulted with project teams, the problem I was

asked to help with had nothing to do with their ability to plan a project. Instead, there

was an unresolved, or even unspoken, conflict of opinion about why one department—

engineering or marketing, for example—is more important than the other. Their singular

perspectives not only caused the problem, but also made it impossible to see the cause of

the problem.

Years ago, I was involved in one of these silly wars myself. I was the program manager

for web-search features on Internet Explorer 4.0. Two business development people were

assigned to us, and they were negotiating deals with the major search engines of the time

(Excite, Yahoo!, Lycos, AltaVista, etc.). We argued with these business experts over

design decisions, continually debating over what was best for the customer versus what

was best for the business. We each believed that we held the authority (I spoke for the

design/engineering staff, and they provided the business arguments). We argued on the

same points for weeks, always debating the specific decisions and never stepping back to

evaluate our hidden philosophies on what made for good products. Things got so bad that

we brought in our group manager to help us reach a compromise.

I'm convinced a broader view would have helped everyone. We were so invested in our

egos that we were willing to waste time fighting over details, instead of working to

understand all of the perspectives on what we were building. A better vision document

could have helped, but that was impossible because the business challenges of the

Internet were so new to the industry (circa 1997). However, had we been sharing each

other's knowledge, instead of resisting it, we might have had a shot at finding a mutually

beneficial compromise.

Bringing an interdisciplinary view to a project enables you to make choices that cut

across the very boundaries that limit your competitors. It also gives you stronger

arguments for any decision you choose to make. Instead of only claiming that a specific

design will be easier to build, you can also say why marketing will find more

opportunities to sell that design (provided, of course, that you're not just making up

these claims). Sometimes, this will require you to make sacrifices. When you're looking

for the best solutions, they won't always correspond to what you're good at doing, or

HOW TO FIGURE OUT WHAT TO DO 55

which ideas you personally prefer. But if you're able to make those sacrifices, you gain

the conviction and sincerity required to get others to do the same. You can then call

others on favoring pet ideas over what's best for the project. People will get behind

decisions they don't completely agree with if they see that an open mind, working in the

interests of the project, is at work making those decisions.

The balance of power

If you work in a large organization, consider the power distribution across all

perspectives. For example, if engineers outnumber business analysts by 3:1, the

engineering view will tend to dominate decisions. The power ratio is simply the ratio of

the number of people prone to a given view. To have a balanced perspective, the ratio

should be 1:1:1 (engineering to business to customer). The more out of balance the ratio

is, the more leaders need to do to compensate.

Of course, the raw number of people doesn't define how much power they have.

Napoleon's army had thousands of soldiers, but there was only one Napoleon. There may

be 10 programmers and 1 marketer (10:1:0), but the marketer may have as much power

over the project, given his role or seniority, as the others combined. This means a

manager can compensate for any natural ratio by granting power to those who should

have more influence on the project. And because the nature of a project changes over

time, different perspectives should have more power at different times. Consider how

you can delegate decisions (see Chapter 12) to find the right balance for the project at the

right time.

Asking the right questions
The simplest way to frame planning work is to focus on questions that the planning work

should answer. They should be pulled from the three perspectives and rolled together

into a single plan.

The questions (often called project-planning questions) should be pulled from the three

lists discussed earlier. If it's a new project (not a v2), you'll need basic questions to define

the fundamentals. If it's a small upgrade to an existing system, there may be fewer

business and customer issues to consider. But no matter what the project is, do the

exercise of running through the questions. It will force out assumptions that haven't

been recognized and give everyone the same starting point for discussion.

This project-planning question list should be free of perspective boundaries. Instead,

you'll have a holistic point of view of the project, which can be divided, as needed, into

engineering, business, or customer considerations. Here's an example list, which uses

more complex versions of questions listed earlier:

56 CHAPTER THREE

• Why does this project exist? Why are we the right people to do it? Why does it need to

be done now?

• What are the three or four useful groupings we can use to discuss the different kinds
of customers we have? (For example, for a word processor, it might be students, pro
fessionals, and home users. For an IT database, it might be sales, receptionists, and

executives.) How do their needs and behaviors differ?

• What demographic information can help us understand who these customers are?
(Age, income, type of company, profession, education, other products owned or web
sites used, etc.)

• Which activities is each user group using our product for? How does this correspond to
what they purchased the product for? How does this correspond to how we marketed
the product? What problems do they have in using the product to satisfy their needs?

• Who are our potential new customers, and what features, scenarios, or types of prod
ucts would we need to provide to make them customers? (What are the demographic

profiles of these new customers?)

• Do we have the technology and expertise to create something that satisfies these needs
and problems? (For each identified need, answers of yes, maybe, and no can often be
sufficient, at least as a first pass.)

• Can we build the technology and obtain the expertise to create something that satis

fies these needs and problems? (Yes, maybe, no.)

• Are there significant opportunities in a new product or line of products? Or are the
needs tied directly to the current product or line of products?

• Are there viable business models for using our expertise and technology to solve these
identified problems or needs? (Willprofits outweigh costs on a predictable timeline?)

• What are the market timelines for the next release or product launch? Which win

dows of opportunity make the most sense to target?

• What are competitors in this marketplace doing? What do we think their strategies
are, and how might we compete with them?

Answering the right questions

It can take hours or weeks to answer these questions, depending on the depth and

quality of the answers needed, which is definedby the project manager or group leader.
As a rule of thumb, the more strategic the project is expected to be, the more important

the quality is of this kind of definition and planning research. For tactical projects that are

directed at minor issues or short-term needs, less depth is needed. You might need to

consider only a handful of questions, and you can base your answers largely on how you

answered them for the last project. But for important projects, this information will be

invaluable in any midproject adjustments or changes, not only in the planning phase.

HOW TO FIGURE OUT WHAT TO DO 57

Some of these questions are best answered by business analyst types, others are best

answered by lead programmers or usability engineers. Often, the best answers come from

discussions among these experts and the sharing of notes, sources, and opinions. It can be
expensive and time-consuming to do this work, but that's the nature of planning. Buying
a house or car, moving to a new country, or writinga book requires significant planning
efforts to make the processwork out well. If you do it right, it enables sharper and
quicker decision making throughout the rest of the project. (I'll talk more about this in
Chapter 14.)

What if there's no time?

In the worst case, even if no researchexists and there's no time for proper investigation,
ask these questions anyway. Raising good questionsalwaysinvites two positive
possibilities. First, intelligentguesses at the right question are better than nothing. Even if
you only have time for guessing, speculation on the right issues is more valuable than

speculation on the wrong issues. Second, the absence of research into core questions can

raise a red flag for leaders and management. The long-term health of an organization is

dependenton its ability to make good plans, and even though investments (hiring
someone or providing funding) might cometoo late to help this project, it might help the
next one.

Catalog of common bad ways to decide
what to do

Thereare always more bad waysto do something than goodways, and projectplanning
is no exception. As an additional tool toward sorting out the good from the bad, Table 3-1

shows some of the lousy approaches I've seen used. I offerthese in the hopes that it will
help you recognize when this is going on, and why these approaches are problematic.

Bad way

We will do what

we did last time.

We'll do what we

forgot to finish
last time.

Example

"Version 3.0 will be like 2.0,
only better!"

"The feature cuts for Version

2.0 will be the heart of 3.0!"

Why it happens

Often there isn't the desire or

resources to go back and do
new research into the busi

ness, technology, and cus
tomer issues.

Itemsthat were cut are argu
ably well understood and par
tiallycomplete, makingfor
easy places to start.

TABLE 3-1. Commonbad ways to decide whatto do

58 CHAPTER THREE

The problem

The world may have changed
since v2.0.Without examining
how well2.0did against its goals,
the plan may be a disaster.

Remaindered features are nones

sential. Focusing a release on
them may not be the best use of
resources.

Bad way Example Why it happens The problem

We'll do what our

competitor is

doing.

"Our goal is to match Product
X feature for feature."

It's the simplest marketing
strategy. Itsatisfies the para
noid, insecure, and lazy. No
analysis is required.

There may be stupid reasons a
competitor is doing something.

We will build

whatever is hot

and trendy.

"Version 5.0 will be Java-

based, mobile-device ready,
and RSSH.O compliant."

Trends are trends because

they are easy and fun to fol
low.People get excited about
the trend, and it can lend easy
excitement for boring or ill-
defined projects.

Revolutions are rare. Technologi
cal progress is overestimated in
the short term, underestimated in

the longterm. Customer problems
should trump trendy fads.

Ifwe build it they
will come.

"Project Xwill be the best
search engine/web editor/
widget/mousetrap ever."

By distracting everyone to the
building, rather than the rea
son for building, people can
sometimes avoid real

planning.

Does the world need a better

mousetrap? People come ifwhat
is built is useful to them, not

because a team decided to build

something.

TABLE 3-1. Common bad waysto decide whattodo (continued)

The process of planning
In the time left for defining the project, answer the planning questions. If possible, each

perspective (business, technology, and customer) should have one person with expertise

in that area driving the research of information, generating ideas and proposals, and

reviewing her thoughts with peers from other perspectives. The trick is to keep this small

enough to be productive, but large enough in perspective to be broad and

comprehensive. A group of 10 people will be much less effective at discussing issues and

developing team chemistry than a group of 5 (see Chapter 9).

From experience, I'd rather deal with the bruised egos of those who are not main

contributors to planning than include too many people and suffer on a poorly planned

and heavily compromised project. The mature people who you do not include will

understand your reasons if you take the time to explain them, and the immature will

have an opportunity for growth, or motivation to find employment better suited to their

egos.

If you're using planning deliverables like the ones I briefly described earlier in this

chapter, the goal of the planning group should be to create and publish those documents

for the team. The planning phase (see Figure 3-3) ends only when those documents (or

more importantly, the decisions they contain) are completed.

A draft version of each planning document should be prepared early enough to

incorporate feedback from the team before a final version is due. As shown in Figure 3-3,

there may even be a simple feedback loop between deliverables. When the draft of an

MRD is created, someone may be able to start working on the vision document, raising

new questions for the MRD that improve it before it's finalized. This pattern repeats

HOW TO FIGURE OUT WHAT TO DO 59

FIGURE 3-3. The feedback between levels ofplanning.

through all of the planning work. So, even if there are hard deadlines for finishing

planning docs, some overlap in time is healthy and improves the quality of the process.

As shown in Figure 3-4, when a project is in mid-game (implementation), it becomes

harder, though not impossible, for this kind of feedback to propagate back up the

planning structure. (Alternatively, Figure 3-4 can be thought to represent a contracted

team that has influence over specs and work assignments only.)

FIGURE 3-H. As time goes by, it should become harder (thoughnot impossible) for changes to propagate
back up the planning structure.

The daily work

As far as the daily work of planning is concerned, there's no magic way to do these

collaborative tasks. People are people, and it's impossible to skip the time required to get

individuals of different minds to come together, learn from each other, and make the

compromises necessary to move things forward. There will be meetings and discussions,

and probably the creation of email distribution lists or web sites, but no secret recipe of

these things makes much difference. Be as simple and direct as possible. The leader sets

the tone by starting the conversations, asking the important questions, and making sure

the right people are in the room at the right time. However, there are three things to

keep in mind:

60 CHAPTER THREE

• The most important part of the process is the roles that people are expected
to play. Who has requirements authority? Design? Ifmany peopleare involved, how
will decisions be made? How will ties be broken? With these sorts of relationship

issues defined early on, many problems can be avoided or, more probably, handled
with composure and timeliness. (See Chapter 10 for more on relationships and defin
ing roles.)

• Everyone should know what the intermediary points are. What are the mile
stones between day one of the planning effort and the day when the project defini
tion should be complete? The timeline for deliverables—such as reports, presentations,
review meetings, or vision documents—should be listed early, and ownership should
be defined for each of them. When exactly does "planning" end and design or imple

mentation begin? There should be good, published answers.

• There should be frequent meetings where each perspective is discussed.
Reports of new information or thoughts should be presented, and new questions or
conclusions should be raised. Experts from elsewhere in the organization or the team
should be pulled into these meetings when they have expertise that can help, or if

their opinions would be of value to the group.

The project manager is often responsible for consolidating each meeting and discussion

down into key points and making sure conclusions reached are written in stone in a place

the group can easily reference. Questions or issues raised should be assigned

appropriately and then discussed at the next meeting.

Customer research and its abuses

There are many different ways to abuse information about customers. Simply claiming

that customers are important doesn't signify much. It takes no work to say "We care

about customers" or "Customer satisfaction is important" because rarely does anyone ask

how those beliefs map to organizational behavior. Even though in the last decade much

progress has been made in refining methods for researching and understanding

customers, most of it has not penetrated through to management- or engineering-centric

organizations. It's still uncommon for project teams to have an expert in customer

research, interface design, or usability available to decision makers.

By far, the most prevalent mistake is over-reliance on a single research method. The

fundamental problem with all research, scientific or otherwise, is that a given study

assesses only one point of view on an issue (we'll discuss this again in Chapter 8). Each

method for examining something is good at measuring certain attributes and horrible at

measuring others (see Table 3-2). Just as you would never use a speedometer to measure

your weight, or your bank account to measure your blood pressure (though they may be

related), there are some things that surveys and focus groups are good for and others that

they are not.

HOW TO FIGURE OUT WHAT TO DO 61

Method What is it? Pros Cons

Focus group Agroup of potential cus
tomers are brought together
to view prototypes and give
opinions in a facilitated
discussion.

Can get many opinions at once.
Allows for extended suggestions
and open dialog.

aDiscussions are difficult to

analyze and easy to misinter
pret. Poorly trained facilitators
create deceptive data.3

Survey Aseries of questions are
given to potential
customers.

Low-costway to get information
from largenumbers of people.
Good for very broad trends.

Information reliability is low.b
Authoring surveys without bias
ing answers is difficult. Easy to
misinterpret data.

Site visits Experts or team members

go to the customers' work
sites and observe them

doing their work.

Observe the true customerexpe
rience. Often this is the most

memorable and powerful experi
ence for the team.

The data is most valuable to

those who did the visit—it's

hard to transfer to others or to

use quantitatively.

Usability study Selected customers use a

design in a controlled envi
ronment. Measurements

are taken for how many sce
narios they can complete, in
how much time, and with

how many errors.

Quantifies how easy it is to use
anything. Provides evidence for
specific problems. Most valuable
when done early, before project
begins.

Little direct value for business

or technological questions. Can
be wasted effort if done late or

if engineering team doesn't
watch often.

Market research The market of the product is
examined to see how many
customers there are, what

the competing products
cost, and what the revenue

projections are.

Onlyway to capture the business
view of a market or industry.

Doesn't explain why products
are successful, and it focuses on

trends and spending, rather
than people and their behav
iors.

TABLE 3-2. Common customer research methods

a Considerhow diligentyou were in answering questions in the last survey you took. Ifyou never
take surveys, ask yourselfabout the kinds ofpeoplelikelyto spend lots of time taking surveys.

b Focus groups tend to bias people toward being helpful. They don't want to insult their hosts,
and they will often be more positiveand generous in considering ideas than they would
otherwise.

Experts at customer research do two things: they choose the method based on the

questions the project team needs to answer, and they make use of multiple methods to

counteract the limitations and biases of individual approaches. Table 3-2 outlines some of

the major research methods and their high-level tradeoffs.

As a program manager at Microsoft, on the best project teams I worked on, I had many of

these sources of information. I'd have to request answers to questions that went beyond

the basics, but there were experts in the organization who would do this for me. On other

teams with less support, I'd have to make do on my own (typically with less success

because I had other things to do, and I wasn't as proficient as a full-time expert would be).

Even with no resources or budget, an afternoon of work answering those questions can

provide useful results. Over time, the skills in doing research will grow and will take less

time in the future. More importantly, having done some of this kind of work on your

62 CHAPTER THREE

own will put you in a more informed position to hire someone to do it for you, should

the budget or headcount finally exist.

With any data, skepticism and healthy scrutiny improve its value. Assumptions should be

questioned, and biases of different kinds of research should be called out when the

research is presented. No form of data is perfect: there are always biases, caveats, margins

of error, and hidden details. The project manager has to be able to see past the biases and

make intelligent use of what's available to make better decisions.

Bringing it all together: requirements
Planning creates large volumes of information, and the challenge becomes how to

simplify it into a plan of action. At a high level, a vision document is where all of the

perspectives, research, and strategy are synthesized. We'll talk more about that special

document in the next chapter. But at a lower level, the simplest tool is requirements.

Many projects use requirements as the way to define the direction of a project. A

requirement by definition is anything the team (and client) agrees will be satisfied when

the project is completed. In the simplest sense, ordering a pepperoni pizza is an act of
requirements definition. You are telling the pizza chef specifically what you want. He

may ask you questions to clarify the requirement ("Do you want a soda with that?"), or
he may negotiate the details of the requirement ("We're out of pepperoni, will you accept

salami instead?"). In the more complex case of software development, good requirements

are difficult to obtain. There are many different ways to interpret abstract ideas ("make it

run fast" or "make it crash less often"), and the process of eliciting requirements can be

difficult.

There are established methods for developing and documenting requirements, and I

recommend familiarizing yourself with them.5 Depending on what authority you have

over the requirements process, there are differentways to go about doing it so that you'll
obtain good results. The details of these methods are beyond the scope of this book.

However, I can offer you one simple method that I think is easy to use and generally very

effective: the problem statements method.

Problem statements are one- or two-sentence descriptions of specific end user or

customer issues. They're derived from research or specific customer requests. They're

written in a format that identifies a need from the customer perspective (as opposed to

the engineering or business perspective). This ensures that the customer viewpoint is

maintained and not distorted by other perspectives.

5 See the excellent Exploring Requirements: Quality Before Design, by Donald Gause and Gerald
Weinberg (Dorset House, 1989).

HOW TO FIGURE OUT WHAT TO DO 63

As an example, here's what a list of problem statements for an intranet web site might

look like:

• It is hard to find commonly needed items on the home page.

• Pages with department information are very slow to load and users have to wait.

• The database query page crashes when working with large tables, and users have to
start over with their work.

• The site does not provide automated access to HR services, which are time consuming
to do manually.

• Search results are difficult to scan with the current layout.

• The registration page doesn't warn about required fields, and it's too easy to make
mistakes.

• The status page doesn't include information about email, and users cannot find out

why their email isn't working.

• There is no way to save preferences or options for how the home page is displayed.

Note that these are not bug reports. These issues may have never been identified as

things the web site needed to do. Problem statements should be broader in perspective

from bugs because we're capturing what's missing from the customer's perspective,
instead of what's broken from a technical perspective.

Each of these statements can be followed by supporting evidence or examples (say,
screenshots that provides context for the issue, or references to the usability study or

other research that surfacedthe problem) to help tell the story and explain why and how
the issue occurs (or why the omissionof a kind of functionality is significant). But this
supporting evidence should not mix with the problem statement itself, or with

engineering plans or business objectives. For sanity, these customer problem statements
should remain purely about customers and their needs.

Problems become scenarios

Because problem statements represent the current state of the world, a project needs

something else to express how the world will be when the work is completed. For this
purpose, problem statements need to be converted into what are called feature

statements or scenarios. There are many different ways to do this; use-cases are one

popular method,6 but there are many others.

Each scenario is a short description of something a customer will be able to do as a result

of the project, or the tasks they will no longer have to do because the project automates

6 See Alistair Cockbum's Writing Effective Use Cases (Addison-Wesley, 2000).

64 CHAPTER THREE

those tasks for them. The idea is to describe these things from the customer's perspective

and to avoid description of how these benefits will be achieved (that comes later). For

now, what's important is that the team is able to discuss which scenarios have the most

value. Considerations for business potential or technological feasibility should be reflected

in how the scenarios are prioritized.

The feature statements themselves should become the way to most easily represent

what's been learned about customers and what the project will be focused on providing

for them. Based on the previous list of customer issues, here is what some feature

statements might look like.

Possible features of Project X:

—Commonly used items will be easy to locate on the home page.

—Search results will be easy for most users to read quickly.

—The site will provide easy, automated access to HR services.

—The registration page will make it easy to enter information without mistakes.

—Department information pages will be at least as fast as the home page itself.

—The database query interface will be as reliable as other parts of the system.

—Users will be able to learn about email server status issues in a simple and conve

nient way.

—Users will have a convenient way for the system to remember their preferences.

Feature statements should never describe a specific design, but should instead explain the

solution's impact on the customer. Thisis easier said than done. Most creative people
love to solve problems and will do it automatically. The trap is that fast solutions are

often shallow. Let the problems marinate before solving them. Simply ask people to write

down their solution ideas during planning meetings and discuss them later. Make

exceptions for ideas that either completelyeliminate problems from the lists or identify

them as trivial.

These feature statements can be ordered roughly by importance, helping to define the

shape of what the project willbe. When the time comes to design, it will go much faster
because everyone will be working toward the same results (instead of being distracted by
their favorite ideas for solutions). Because so much is riding on these short descriptions,

they need to be written carefully and with consideration for how long they'll be used by

the project team. It often takes several passes and reviews to get them right, but once

complete, they'll rarely need to be redefined over the course of a project.

HOW TO FIGURE OUT WHAT TO DO 65

Integrating business and technology requirements

With a list of features derived from user research, additional features to satisfy business or

technology considerations can be added. But a primary question must be answered: what

is the purpose of these additional requests if they do not help customers? Before adding

features, the list should be reviewed to see which ones already represent these business

and technology considerations. This forces all discussion to be centered on customer

benefit, without prohibiting specific technology or business considerations. Any

noncustomer-centric features should be revised to make sure they do not negatively

impact the customer's experience.

Sometimes, it's necessary to add a feature to help sell a product, despite its dubious end-

user value, or to satisfy a demanding client or executive. But by planning first around

customer research, problem statements, and resulting features, everyone will have to

make arguments within that context. Thisgivesthe project manager a level playing field

of features that has the best interests of both the customer and the organization in mind.

Summary
• Different projects demand different approaches to planning.

• How planning is done is often determined by who has what authority. Requirements,
design, and budget are the three kinds of project authority that impact planning.

• There are some common deliverables for planning projects: marketing requirements
documents (MRDs), vision/scope documents, specifications, and work breakdown
structures (WBSs).

• The most powerful way to plan a project involves use of three equal perspectives:
business, technology, and customer. The customer perspective is often the most mis
understood and misused.

• Asking questions forces good thinking and directs planning energy effectively.

• The process of defining requirements is difficult, but there are good references for how
to do it well.

• Problem statements and scenarios are a simple way to define and communicate
requirements. They are easily converted into design ideas without losing clarity about
what's important and what isn't.

66 CHAPTER THREE

Exercises

A. Make a list of who had design, technology, and business authority on your last project.
Was knowledge ofthismadeclear to the teamat the beginning? Were the rightpeople
chosen to make these kinds of decisions? How did that impact the project?

B. Of the three views—business, technology, and customer—which was the least
represented in the lastproject youworked on?What impact did that haveon the
quality of what was made?

C. What are some of the problems with defining requirements that aren't discussed
above? Ifyou havea customer who demands a feature that you believe isa mistake,
or who changes his mind after work has started, how should the disagreement be
resolved?

D. Imagine you were the managerof a project where the engineers and the businessmen
did not like each other, and they fought over basicdecisions. What actions could you
take to improve their relationship? (Hint: What questions aren't beingasked? What
views aren't represented?)

E. Let's assume you decided to sabotage a projectduring its planning phase. Make a list
of the most potent things you coulddo to foul things up. (Ifyou get stuck, assumeyou
don't care about getting fired.)

F. Make a list of how, if you were the manager instead of the saboteur, you'd prevent or
respond to items in the list from question E.

G. What are the warning signsof a project around which there was too much planning?
What can be done if you, as the project manager, see all the warning signs?

H. Have you ever seen a person use something you designed? Run your own super-
informal usability study. Give a potential new customer your marketing literature, sit
her down in front of your software, and ask her to try and do whatever the marketing
literature saysthe softwarewill let her. Offer absolutely no help, no matter how
desperately you want to give it. You will learn moreabout the importance for user
research than any book could possibly tell you.

I. Should the person who writes a requirement be the same person who works on
designing something to fulfill it? What are the problems with having one person do
both? What are the problems with having a separate person for each?

HOW TO FIGURE OUT WHAT TO DO 67

CHAPTER FOUR

Writing the good vision

o ne challenge in leading teams iskeeping people focused on the same goals for long peri
ods oftime. All leaders fear that decisions theymake won't be remembered. It's possible
that the reasons people had forlistening to themtoday will be forgotten or ignored
tomorrow. Perhaps worse, managers themselves mayforget in which direction they are
supposed to be leading the project. So, the challenge ofprojea management isnot only
to get things startedin the rightdirection, but also to keepit headed that way.

Chapter 2 included a brief overview of planning documents, such as MRD, vision, and
specifications. This chapterfocuses on the vision document, the most important of all
planning materials. I'll explain why vision documents are worth the effort to write, what

qualitiesgood ones have, and how to continuallyget value from them over the course of
a project.When they are used properly, they conclude the initialplanning phase of a
project (see Figure 4-1).

Vision c*mf>l*** H XnitiaJ p/annin^ HI

Spec eo*"/>'

FIGURE 1 -1. Afinalizedvisiondocument signifies theend of theplanning phase,justas final
specifications signifythe end of the design phase.

But one note before I start: there are many different ways to divide the ground these

documents cover. Some organizationsdon't use MRDs or business justification

documents at all, and instead roll that information into the vision document itself. A few

times I've been on very smallprojectswhere vision-typeinformation was collapseddown
into the specification itself, or simply kept on a wikior in email. So, don't worry about
how many documents you shouldhave or what they're called—that's not important. My
advice applies well to any process you use.

The value of writing things down
Daniel Boorstin, author of the great works The Creators (Vintage, 1993) and The Discoverers
(Vintage, 1985), once said that the written word was the greatest technology man ever

invented. Without it, we'd be dependent on our notoriously unreliable memories1 to do

1 Read Daniel Schacter's The Seven Sins ofMemory (Mariner Books, 2002); or, watch the excellent
film, Memento. They both should help you recognize how limited and unreliable human mem
ory is.

70 CHAPTER FOUR

complex things like make dynamite (hmmm, how much nitroglycerin goes withhow
much charcoal?) or nuclear reactors (the uranium goes where?). Specific to the pursuit of
project work, writing things down makes it possible to define engineering work or
capture the overall objectives for entire teams only once, andreuse that knowledge many
times. Documenting the details of decisions offloads the burden of precision and
recollectionfrom our minds down to paper; all we need to do to recover them is look at
what we wrote. That freedom of mind allows us to go at full speed at the task at hand,

confident that we can return to what we wrote if needed (say, when we lose focus, have

disagreements, orgetconfused). It follows that the more complex andinvolved anyeffort
is, the more likely it is that writing down some of the details about it will improve the

chances of success.

The larger a project, the morecomplex and involved the workwill be. A teamofthree
might be able to talk enough in the hallway to coordinate, but a team of 20, 100, or
1,000, working in different time zones, doesn'thave that luxury. Instead, someone has to
define the higher-level plan for all of the workbefore much of it begins, and she needs to
document it in a way that everyone can easily use as a reference.

Writing things downalso serves to communicate the intentions ofa team across a large
organization. Ifgroup Acanrepresent theircore ideas and high-level decisions in a short
document, then groups B and C can understand group A's intentions and raise questions
or provide feedback quickly. Themorecomplex and involved a project is, the more
important that short document becomes, because complex projects have higher odds for
miscommunications and costlymistakes.And, as a bonus, new people to the team (senior

and junior alike) can read a distilled version of the core ideas of the project and get up to
speedmuch faster than if they had to learn those coreideas on an ad hoc basis.

How much vision do you need?
I've seen vision documents that were 50 pages long, carefully formatted with research,

diagrams, and strategic thinking. I've also seenvisions that were a couple of pages of
bulleted items, with a few sentences describing each one. Depending on the project,

different amounts of structure and planning are needed. Don't make the mistake of

thinking that planning documentsare fixed, rigid things: they're just documents. How
deepor fancy they need to be depends on the nature of the project and the cultureof the
team. However, good visiondocuments tend to cover the same kinds of questions, but

the material varies in depth and rigor.

To help you figure out how much structure and investment your vision document needs,
consider the following questions:

WRITING THE GOOD VISION 71

• How many valid questions does the team itself have about the future? How much do
people expect to knowaboutwhat they'll be doing and whythey'llbe doing it?

• How manydifferent people will be impacted bythe project? How manydifferent orga
nizationsare they in? Howwillyou properlyset expectations up, down, and across
each organization?

• How much explaining of decisions do youwant to have to do in person? (A good
vision shouldstand on its own in representing the project to many people.)

• What depth of feedback on project direction do you want from others?

• How much depth ofknowledge and thoughtshould a project leaderprovide to the
organization as part of makingproject-level decisions? (Avisionprovidesthe evi
dence of this.)

• During the course of the project, how much depth of strategic thinkingshould the
team have access to?

• What research doexecutives or senior managers expect you to doaspartofproject
planning? How will you deliver this to them?

• Will therebe a needto remind the team lateron ofwhat the goals are?Are people
likely to argue lateraboutspecific issues that have beenagreed on recently?

The more detailedand strongeryour answersare to these questions, the more value a
vision document will have. Iffew ofthese questions apply, gowith something
lightweight and informal. Ifmany ofthemapply, and reading themmade yourstomach
churn, you'll need heavier stuff.

These questions are more accurately questions ofleadership than purely about visions.
However, a vision document is the only way to simultaneously address many of them.
Even ifworking alone (solo-superman), writing down an informal vision document (e.g.,
a list ofgoals) for the week, month, and year goes a long waytoward concluding those
periods of time with something to be proud of. Once things are written down, it's easier
to hold people accountable for them, even ifyou're onlybeing accountable to yourself.

Team goals and individual goals

To talkin detail about visions, I needto define some terms. Visions, teamgoals, and goals
are often used in overlapping ways. Hereis a clarification of how I'm going to use them:

• Vision. Defines the high-level goals for the entire project. This may also includea
vision statement or uber-goal. (High-level goalsdefined by a vision are sometimes
calledobjectives to help distinguish them from lower-levelgoals.)

• Team goals. The subset of the vision a particular team is responsible for, which is
definedin greater depth than the vision. (Forexample, team A might be responsible
for the database system and its goals, and team B might be responsible for the search
engine system and its goals, but both share the same project vision.)

72 CHAPTER FOUR

• Individual goals. The subset of team goals that an individual is responsible for.

On smallprojects, there's little distinction between team and individualgoals (see
Figure4-2). A projectmight even be smallenough that there's no need for these
distinctions. But on larger projects with 50 or more people, this layer is necessary.

Workingon large teams for much of my career, I'm used to seeing these three layers: one
set for the entire project (vision), one set for each feature or area of the project (team),

and one for the personal goals for each employee workingon the project (individual).
The first two are of public record for the entire team; the last one is between the

employee and his manager.

10hut X a.m
doin%.

FIGURE H-2. Three levels ofgoals.

As an example, let's take project Hydra, an intranet web site:

• Hydra vision. The Hydra web site will make the most frequently used intranet sources
(search, accounting, inventory, HR, travel) easily accessible from one web site, with
one easy-to-use interface.

• Team A will be responsible for making search and accounting easily accessible and
simple to use. Team B will be responsible for inventory, HR, and travel.

• Fred (team A) will design and implement all features required for searching. Mike
(team B) will drive the overall design effort and write all user interface specifications
for Hydra. Bob (team B) will design and implement all the features required for HR
and travel.

There is strong inheritance from the top down: team goals inherit from project goals, and

individual goals derive mostly from area team goals (the primary exception being

individual needs for training or growth that can't be satisfied within the project).

Provided these three levels are well crafted, everyone should show up every day,

motivated to do work that makes local sense to them and contributes directly to the

entire project. The time it takes to set up this structure is worth it. It creates natural

synergy and makes managing a project easier (see Figure 4-2).

WRITING THE GOOD VISION 73

Different documents should correspond withthese three levels ofdefinition (or
minimally, different discussions). For the entire projectvision, the group manager or
uber-project leader should be leading the creation of the high-level vision document. She
should then expectarea or componentleaders to interpret those high-level directives into
goals for their ownareas, possibly lifting specific themes or goals from it. Finally, line-
level contributors should bediscussing with their team leaders whattheirindividual goals
and responsibilities are, derived from those team goals.

The five qualities of good visions
Because everything derives from the high-level vision, the team's overall leader should

investmore energyin it than any other earlyplanning material. The five most important
characteristics are: simplifying, intentional (goal-driven), consolidated, inspirational, and
memorable.

Simplifying

The most important quality is a simplifying effect on the project.A good visionwill
provide answers to core questions and giveeveryone a tool for making decisions in their
own work. While a vision will raise new questions, these should be fewer in number

than ones that no longerneed to be asked. In the early phases ofa project, people should
be referring to the vision all the time—in discussions, emails, and meetings—actively
using it as a tool to help make decisions.The project manager should be on the lookout

for this and be willing to modify and revise the vision to include unforeseenquestions
that will make it more useful to the team.Thevision shouldnever be likea religious
relic, protected inside a glass cabinet. It should be more likea rulebook to a goodboard
game, providing clarity for everyoneinvolved, making boundariesclear, and quickly
settling disputes or miscommunications. It should be worn out from use and have notes

scribbled in the margins. Its effect shouldbe to put an end to the preliminaries quickly
and get peopleinto the heart of the actionwith the confidence that the project can
succeed.

Intentional (goal-driven)

The vision document is a project's first source of goals. It sets the tone for what good
goals look like, how many goals there should be in a plan, and how much refinement the

goalsmay need before they are complete. A well-written goal defines a clear intention for

the people on the team. Enoughinformation isprovided in the goalitselfthat peoplewill
know when it's been completed. They should also be able to easily separate out activities
that are likelyto contribute toward the goalfrom ones that won't. Writing good goals is
difficult and highly subjective; it takes many revisions to obtain a strong, well-written

7H CHAPTER FOUR

goal. The fewer high-level goals, the more powerful the vision document becomes. As a
rough rule of thumb, a projectvisiondocument should have somewhere between three

and five high-level goals (see the upcoming catalogof good vision statements for

examples).

One popular business acronym for writing goodgoals is SMART: Specific, Measurable,
Action-oriented, Realistic, and Timely. The idea is that if a goal has all five of these

attributes, it's likely to be well defined enough to be useful (however, subjective

judgment remains as to how specific or realistic a goal should be). Another technique
that can help with goals is playing devil's advocate: ask how a project can still fail if its

goal can be satisfied as written. Then consider if there is a way to more carefully phrase
the goal, or if another bit of supplementalinformationshould be provided to support the

goal.

Consolidated

For the vision document to have any power, it must consolidate ideas from many other

places. It should absorb the key thinking from research, analysis, strategic planning, or

other efforts, and be the best representation of those ideas. Any vision for a team is a

failure if understanding it requires the reader to do even half the work of the author.

For this reason, it's best to separate out the goals and directives from all of the supporting

arguments and research behind the plan. There should be one place to easily find all of
those supplemental thoughts and materials (a simple web site), and it should encourage

the diligent (or the skeptical) to go deeper than the vision document itself. Consolidation

does not mean jamming together a random assortment of references—it means that there

should be coherence among them. They should use the same template and formatting, or

at least be easily printable as one volume: not for the sake of process, but because this

makes it easier to read, which forces someone (preferably the head honcho himself) to

consider exactly how many references or sources are important for people to be familiar

with. That number shouldn't be zero, but it also shouldn't be 15 or 20 papers, essays, or

reports.

Inspirational

Inspiration never comes from superficial things (and as an aside, even superficial people
require genuine inspiration). To connect with people, there must be a clear problem in

the world that needs to be solved, which the team has some interest or capacity to solve.

While a charismatic team leader can help, it doesn't change the quality of the ideas

written down in the vision. By giving the reader a clear understanding of the

opportunities that exist, and providing a solid plan for exploiting it, people who have any

capacity of being inspired, will be. Although with programmers and engineers there is a

WRITING THE GOOD VISION 75

tendency to draw inspiration from technological challenges, it's easy to derive those
challenges from the real-world problem that the project needs to solve. Make sure

everyone understands that the project is being funded to solve the real-world problem
and not just the technological one.

Memorable

Being memorable implies two things: first, that the ideas made sense; and second, that

they resonatedwith readersand willstaywith them over the duration of a project. They
might not remember more than a few points, but that is enough for them to feel

confidentabout what they're doingevery day. (Note that if the visionis too complexfor
anyone to understand, it's impossible to achieve this effect. People rarely remember
things they don't understand.)

Being memorable is best served by being direct and honest. If you can strike at the core of

decisionsand communicate them well—evenif people don't completely agree with those
decisions—they will stay with people longer than those from a visionfull of ideas they
fully beheve in but were buried in weak and muddy writing. So, strive to make the vision

clear and confident. Givethe team strong conceptsand ways of thinking about the work.

Avoid flashy ideas that might inspirepeoplein the short term, or capture a fad or flighty
trend, but run out of steam after a few weeks, when the value of the idea has been spent.

The key points to cover
At the heart of a vision should be answers to many of the following questions. It's

common for these topics to be major headings in a vision document or listed at the end as

part of a Q&Asection. (Although, when these questions are not addressed in the core

document and are made into an appendix, expect to see engineers flip to the last pages,
which implies something negative about the strength of the writing that preceded it.)

Answering many of these questions demands involvement from marketing, customer

research, product design, or other experts who are available to you—and this should not

be an afterthought. Some of the following questions are intentionally similar to questions
asked in the previous chapter on planning. The difference is that these questions are

angled heavily toward priorities and decisions, rather than context and understanding.

During planning, there was room for exploration, but the vision is obligated to take a

stand and be decisive.

• What is the one sentence that defines this specificrelease of this specific project? (This
is often called the vision statement, or for the cynics on the team, the visionless state
ment. Examples for this are offered shortly.)

• How does this project contribute to the goals of the organization? Why is this project
more relevant than others that also might contribute to the goals of the organization?

76 CHAPTER FOUR

• What scenarios/features for customers are essential to this project? (Priority 1.)

• What scenarios/features for customers are desired but not essential? (Priority 2.)

• Who are the customers? What problems does this project solve for them? What evi
dence or research (as opposed to opinions and speculations) supports these claims?
How will customers get their jobs done without this project?

• Who are the stakeholders for this project in the organization (the people with power

over the project but who are not necessarilycustomers)? What role will they have in
the project? (We'll cover stakeholders in Chapter 16.)

• Why will these customers buy or subscribe to this service? (Obfuscatedversions of
"because it's cool" or "because they have no choice" are not acceptable answers. How

ever, summaries of what target users are currently paying for, and how the new
project fits into their lifestyles, budgets, or daily habits, would be. Of course, in an IT
situation, the answer may be "because they have no choice.")

• Who are the competitors, and how will this project compare to them? (Prior releases
of similar projects should be included as competition, or possibly nontechnological
alternatives such as pencil and paper. The Palm Pilot's simple design is attributed to
seeing paper as the primary competitor, not other electronic devices.)

• What solutions for customers have been requested or suggested but will definitely not

be part of this project?

• How is this not a technology in search of a problem?

• What is the project not going to accomplish? (Don't be pedantic: list the things people
might guess or assume would be part of the project, but won't be. Include political,
business, and customer perspectives if they're not already covered.)

• What are some likely ways for this particular project to fail, and how will they be
avoided or minimized? (In early drafts, there might only be risk evaluations, but with

out plans for managing/avoiding them.)

• What other companies or groups is this project depending on in order to succeed?
What other companies or groups are depending on this project in order to succeed?

• At a high level, how will the work be dividedacross the team? Who are the leaders for
each major sub-area of the project, and what authority do they have?

• What assumptions are being made that the project depends on? What dependencies
does this project have on other projects, companies, or organizations?

For any question or point that is considered critical, there should be rock-solid thinking

behind it. The project manager should seek out the smartest and most skeptical members

of the team, and enlist them to poke holes in the logic and supporting arguments behind

key statements. Because these points will be the cornerstone of everything that follows,

they should be irrefutable. This feedback process is often best done informally, one-on-

one or in very small groups, with the project manager incorporating feedback and

considering new perspectives after each discussion.

WRITING THE GOOD VISION 77

On writing well
Even for thoseamong us who naturally communicate well, visions and leadership
documents bringwith them the potential forgreatpretension. Suddenly there's an
opportunity to show to the entire organizationhow grand your thinking is—the ego
temptation is hard to resist. But pretentious writing defeats its own purpose: instead of
communicating ideas, it obscures them.

It's hard to be simple

The most common mistake in writing visions is equating complexity of thought with
complexity of presentation. Contrary to what many people think, it takes significantly
more work to express sophisticated ideas in a simple manner than otherwise (writing
code and writing essaysshare this relationship). Ten pages of summaries, disclaimers,

charts, and diagrams can easily obfuscate the central ideas of a vision. Their inclusion

might only prove the insecurities and lackof concision on the part of the author (read
any academic or philosophical journal for bountiful examples of this). Sadly, this
behavior is easy to copy. It tends to start at the top of organizations and bleed down,

causing near-fatal levels of poor communication. In some companies, it's hard to be sure
the documents are in English.

For this reason, the vision document establishesmore than just the direction of the

project. It establishes the tone and communication qualitypeople should expect from
each other while working on the project. It's a chance for team leaders to demonstrate for

everyone else how to cut to the chase and communicatewell. On the contrary, if the
vision is bloated, jargon-laden, pompous, highly speculative, inconsistent, or even

delusional, it shouldn't be a surprise that the resulting project will have the same
characteristics.

Good vision documents never shy awayfromtheir core ideas. Theyavoidprefaces,
disclaimers, and introductions, and they makeno attempt to hide fromthe key (and
perhapscontroversial) decisions that will define the project. Because of this, they are
often short and easyto read. Manypoor vision documents I've read were largevolumes
that were intimidating not because of the sheerbrilliance of thought they expressed, but
because of their physical size. The intimidation worked: no one read the document.

Writing well requires one primary writer

Many of the worst vision documents I've seen were generated by committees. Small

committeescan sometimesact as good soundingboards,but they should never play the
role of primaryauthorship or decision-making authority. Unless there is exceptional
chemistry and shared vision (generally anathema, giventhe politics of committees), the
prospects of clear, concise, passionate writingare dismal. Therefore, the project manager

78 CHAPTER FOUR

or leader needs the authority to author the vision and drive one voice into it, with the

full understanding that it's her job not to write a reflection of her own personality, but

instead to encapsulate the best ideas and thinking available in the organization. The one

author should be a strong collaborator who is able to incorporate the best ideas and

opinions of others into a single document.

A canonical reference for primary authorship is the Declaration of Independence. In

1776, the Continental Congress formed a committee to write this document. The

committee met several times, but in recognizing the importance of clarity in the

document, asked Thomas Jefferson to write the draft. Much like I'm suggesting for a

project team, Jefferson wrote many drafts and engaged in discussions with Congress over

the course of several revisions. The group delivered a final document to Congress several

weeks later. This role doesn't need to be highly visible; Jefferson did not do a book-

signing tour or product endorsements for his work on the Declaration. He was simply

granted the authority to make use of his skills in the best service for his team.

Volume is not quality

It should be understood that clear thought does not require many pages. The most

effective leadership documents in the world were not very long. The U.S. Constitution,

including the Bill of Rights, is a mere 7,000 words (about 6 pages). The 10

Commandments are 300 words. The Magna Carta is 5,000. Good, clear thinkers are able

to distill ideas down to their core and central elements, and they express them in a way

that is more powerful than twice as many pages. Volume should never be confused with

quality. Unfortunately, because volume is easier to produce than quality, we sometimes

give in to the temptation of "Ifwe can't be good, we might as well be long and perhaps
no one will notice" (another habit of committee lead authorship). Although with this in

mind, it is fair to ask why I wasn't able to make this book shorter. Mea culpa.

All of these points imply that the ownership of drafting and revising a vision should be

assigned carefully. Odds are good that the best communicator in the organization is not

the person with the most senior job title. The highestprobability for authoring a good
vision requires the project leader to know his own strengths and weakness, as well as

those of the people on his staff.

Drafting, reviewing, and revising
Every organization has different considerations to make in how they plan projects. I can't

offer a simple, five-step plan for how to get from day 1, with no vision, to day 20 (or 5 or

50) with a completed and fully sponsored vision. Depending on how much authority you

do or do not have, it may take considerable time to get all of the necessary approvals and

have all of the needed conversations to pave the way for the project.

WRITING THE GOOD VISION 79

But what's important is that the process for defining the vision startsbefore the currently
active project for your team is complete, and it needs to be finished before the team is

expectedto move at full speedon the next one. Sometimes, one individualcan be pulled
offa projectin its lastphases and can dedicate halfher time to scouting out the key
questions listed earlier. The project leader can then pick up the momentum from this

work and drive toward a draft more quicklythan he could if he were working alone.

Often, the most demandingpart of this process in largeorganizations is workingwith
senior management to coordinate what needs to be done (see Chapter 16). Are there

plans from the CEO or executives for the entire company that impact this next project?
Are there engineers or other thought leaders who need to be consulted? Who are leaders

in the organization (both the localteam and the entire company) that have expertise, or
political influence, that you need to be aware of and build relationshipswith? Are there
core ideas that you are expected to deliveron, or at least consider deliveringon? Do
other projects in the company need you to deliver something to them so that they can
succeed in their efforts?

In good situations, the senior managers provide clear answers to these questions and
acknowledge the uncertainty they are creating for the projectwhen they leave good
questions unanswered. In bad situations, a heavy burden is placed on the project
manager to create her own answers and learn only by trial and error what the real

boundariesare. (Alternatively, if you are in a small shop and have only your peers to
answer to, all of these senior management questions and burdens are, for better or worse,
yours.)

In any case, the nature of the work is the same. Given a projected timeline between

completion of the current project and the point in time when the new project needs to be
at full steam, intermediary points need to be set for rough drafts, reviews with leaders

that represent the entire team, and complete first drafts ofa vision for the project. Expect
that at everypoint of review, timewill be spentrevising and improving the draft (as
opposed to assuming that everymeeting will end with the room nodding in agreement).
Start small, and graduallyincrease support for the core ideas over time, making them
better after each opportunity for feedback. The timeline for this process should be made
public (seeFigure 4-3), and the people in the smallgroup shouldn't be hidden away in
special offices or in other buildings. They should be visible and accessible to the team

(although care should be taken not to distractthem from the current project).
Encouraging questions and visibility always helps smooth transitions into new work.

Part of this process must include a presentation of the key ideas, and the draft vision, to

the entire team (akaall-hands meeting) earlyenoughthat it isnot complete pretense, but
scheduledlate enough that there is something substantive to say. While this is scaryfor
new leaders, if a meeting is held at the point in time when core ideas are strong but some

80 CHAPTER FOUR

Rov^h drcuf-f ^/jq

Revie to ioUh leccLer% 3//S"

Public first draft B/l-2-

All~ho.r\cL% mee-fin^ 3/W

f^irxaj visio /» //T

FIGURE H-3. A basic schedule for reviewing and revising a vision document

questions remain, the opportunity is created for everyone on the project to see the vision

as something alive and accessible. They won't reject it if it's something they can still

influence and question. If the vision has grown up through many conversations and

opportunities for feedback, the rollout to the team will feel natural to everyone involved.

When the vision is completed, the planning phase is over (see Figure 4-3). The team

should have the information needed to do good design work that satisfies the goals. If a

review process like the one shown in Figure 4-2 has been used, the team should have a

head start on design because they've been made aware of the general direction early on.

A catalog of lame vision statements
(which should be avoided)
I've read dozens of vision documents in my career, and there are certain patterns the bad

ones share. Lame visions have no integrity: they don't offer a plan, and they don't

express an opinion. Instead, they speculate, and avoid the possibility of being wrong. If

the vision doesn't take a clear stance on what should happen, the team leaders will never

fully invest emotionally behind the effort, setting up the project for failure. In the film

Fight Club, Tyler Durden says, "Sticking feathers up your butt does not make you a

chicken." Writing a document with the word vision in the title doesn't mean you have a

vision. You can have all the right meetings and use the right document templates and still

miss the entire point of what vision documents should do. In the same sense that having

the job title project leader doesn't magically make everything you do an act of leadership,

calling something a vision document doesn't mean it will have the effects I've described

previously.

Table 4-1 shows some of the common things I've seen in impressive-looking vision

documents that disqualify them from having project leadership value.

WRITING THE GOOD VISION 81

Lame vision statement Example Why it happens/fails

The kitchen sink Maximizeour customer's ability to get their
work done.

Too broad to be useful. This is a mis

sion statement for an organization,
not a vision for a project.

The mumbo jumbo Develop, deploy, and managea diverse set of
scalable, performant, and strategic knowl
edge-management tools to best serve our con
stituents, partners, and collaborative

organizations, improving the possibility of
overall satisfaction amongour diverse cus
tomer profiles.

This is jargon-based committee-
speak. It uses complex language to
hide the absence of strong ideas. No
one can know what this means; there

fore, it can't be useful.

Thewimp-o-matic We may eventually consider trying to do
something that's kind of better than what
we've done before. At least that's what we

think our vision should be now.Butdon't go
too far because we think itmightchange again
pretty soon.

Everyone will see how spineless this
is, and there is nothing for the team to
rally around.

What the VP wants Mr. VP'svision for our corporation is to be the
best producer of widgets in mid-size markets,
and we willwork very hard to work up to Mr.
VP's standards, using every resource at our
disposal to make this happen.

"1 said so" is not a supportable argu
ment. VPsare obligated to provide
reasons for important decisions, and
that's what the vision is for.

TABLE H -1. Common iame vision statements

Examples ofvisions and goals
In this section, I provide some examples of good vision statements and project goals

pulled from my own experience. Although I've changed the details, it's easy to imagine

what working on these projects would be like, as well as what the goals underneath the

visions might contain.

Here are examples of good vision statements:

• SuperEdit 3.0, the editing tool for experienced copy editors, will make the top five
most frequent customer scenarios easier to use, more reliable, and faster to operate
than SuperEdit 2.0.

• Superwidgets.com will be the premier widget-purchasing site on the Internet for pur
chasing agents at medium-size corporations. It will make the entire process of widget
purchasing for medium-size businesses fast, easy, and safe.

• The Helpdesk Automated Services Site (HASS) Version 5.5 will address the top 10 cus
tomer complaints across the university, without any negative impact on average per
formance, reliability, or response time across the system.

As an example of good project goals, here's what the team of people that developed the

Palm Pilot handheld organizer used to define their project:2

2 From Piloting Palm:TheInside StoryofPalm, Handspring, and theBirthof theBillion-Dollar Handheld
Industry, by Andrea Butter and David Pogue (Wiley, 2002), p. 72.

82 CHAPTER FOUR

1. Size. Fit into a shirt pocket. Be light enough not to seem unwieldy.

2. Cost. Less than a luxury paper organizer ($300 USD).

3. Simplicity. Should be as simple as paper. Turns on instantly and uses simple

conventions.

4. Sync with PC. Use the PC as a common point of interaction for the customer.

Good project goals like these are clear and simple, and describe the world as it will be

when the work is complete. Remember that simplicity is different from difficulty. It was a

significant technological and design challenge to create a product that satisfied these

goals. The preceding examples of good vision statements might represent huge challenges

for those projects. Depending on how "premier," "easier to use," and "top complaints" are

defined, those projects could have big challenges ahead of them.

Supporting vision statements and goals

The claims made in a vision statement, or in project goals, should be supported or

clarified somewhere in the document. So, what these statements mean by customer needs,

easier toperform, reliability, and top customer complaints should be defined well enough that

informed decisions can be made. If those things are important enough to be in the vision,

they are important enough to enlist expert help in fleshing them out to the same

precision and detail as technological goals. If claims such as "easy to use" are made, but

no one has any expertise about ease of use, the team isn't set up to meet that goal. In

producing the vision, leaders should be assessing what resources are needed to be

successful and how resource and skill gaps will be filled (the choices are train, hire,

change vision, or cross fingers).

Visions should be visual
"A finger points to the moon. Donot confuse the finger for the moon."

—Zen parable

Visions earned their name for a reason: they are supposed to appeal to our capacity to

imagine and visualize a specific kind of outcome. By looking at a picture, we absorb many

levels of information all at once. For many complex concepts and ideas, pictures provide

faster access and greater clarity to more people in less time than words. I've had dozens of

conversations in my office with programmers or architects who are struggling to clarify

points of an argument, only to end when one of us finally goes to the whiteboard,

quickly sketches out the idea, and asks, "Do you mean like this?" Then usually we all

laugh at how much time we wasted trying to explain object models or designs with our

words or our hands, when a marker and whiteboard would have been much faster. I

think American culture emphasizes verbal and mathematical skills over drawing and

WRITING THE GOOD VISION 83

artistic skills, and most professional people's reflexes have been trained to go in that

direction. I'm convinced that, to our detriment, we forget the power of images in

expressing ideas.

The best vision documents include visual images. They provide rough drawings, mock-

ups, or prototypes of what the final result might look like if the vision is followed. These

were offered as suggestions and rough cuts, giving people just enough of an idea to help

the goals in the vision crystallizein the readers' minds. It's made clear these mock-ups

are far away from a final version of what will be built. Very far. Instead, they are

presented as just one early attempt to fulfill the ideas in the vision. This kind of

speculation enables people to talk about the work itself, rather than only the abstractions

of the work provided by the vision.

Mock-ups and prototypes often resonate more with the most hardcore engineers and

programmers than any object model diagram or code sample. Unlike those familiar and

abstract forms of expression, the visualprototype shows something that doesn't exist yet,
but can. Skyscraperarchitects and automobile designers make many physical mock-ups
and prototypes to help them understand the ideas they are working with and get

feedback on those ideas from others. Filmmakers use storyboards for the same purpose.

Good vision documents shouldn't shy away from using similar techniques. Showing a

sketch of the final thing allows every individual to put his own work in a larger context.

The team members aren't just building a component anymore. They now have an idea of

what their component will make possible when it's finished.

Visualizing nonvisual things

Just because a project doesn't have a user interface or interact with customers doesn't

mean it can't be visualized. How will the world change when the project is finished?

Perhaps the vision is about the elimination of some problem or frustration for people

(slow servers, crashing databases, etc.). This can be visualized by showing before-and-

after views (or simulations) of the same web site—or a prototype that compared the

sequence of steps customers will have to do before and after—expressing how much

simpler things will be when the new architecture or database is implemented.

There are often many ways to visually express ideas, regardless of how abstract or

technical they might seem. If the project will allow customers to spend less time at their

desks, show an empty chair by a desk. If the project will make the database faster, show

two demos, one before and one after. If the failure rate of an embedded system API will

decline by 10%, show the graph of a test case that's being used to measure this, before

and after the project. Give the team a visual image no matter how dull or boring it is, to
frame around their individual work.

8H CHAPTER FOUR

If this end result cannot be visualized—even as just a sketch, a mock-up, or a chart—then

I'd argue that the vision is not clear. If you can't find any visual representation of the

impact of the project on the universe, be afraid that it's directed toward something the

world doesn't need, or that it isn't well defined enough for you to be successful.

This skill of imagining the future and visualizing ideas, particularly when customers are

involved, is the domain of designers. Sometimes they're called interaction, product, or

even industrial designers. They are professionals who have been trained in how to

convert ideas into images and abstract thoughts into the details of what customers will

see. While some engineers or project managers might have these talents, few have

cultivated them into skills. If ease of use and customer satisfaction are goals, then the

services of designers should be acquired early on in a project, and contributing this aspect

to the vision would be only one of the natural contributions they would make to the

project. If brought in early enough and granted authority to be truly involved, they not

only make products look good, but also will contribute significantly to making the

product itself good.

The vision sanity check: daily worship
One of the original copies of the U.S. Constitution sits in a vault, behind thick panes of

Plexiglas, in a museum in Washington, D.C. Although it's safe and secure, I'm certain few

people read it in this format. When ideas aren't accessible or kept in the light, they fade

away (unless they're important enough to get their own exhibits at museums). Even on

short-term projects, it's easy to lose track of how daily decisions fit back into the larger

whole, and the lack of visibility of the core ideas promotes this kind of entropy. People

might be very busy and feel good about the modules and pieces they are constructing,

but without frequent and common points of reference, it's hard to know whether it's all

still going in the right direction. The vision, or the core ideas and goals that are part of it,

must be kept alive in the hallways and offices of the people doing the work.

To keep the vision visible, a few core goals should be up on posters in highly trafficked

parts of the hallway. They should be discussed openly in weekly or monthly meetings,

read aloud to the entire room before the meeting starts. Slide decks or other materials

used within the team should have those few core points on the first slide or the first page.

Most people on the team, most of the time, should be able to name most of the goals of

the project, certainly at least the ones that they are contributing to directly or are

responsible for.

But this visibility doesn't necessarily keep the vision alive. The fact that people have

memorized it doesn't mean they are continuing to use it in their work. Keeping the

vision alive requires action on the part of team leaders. They have to continually reapply

the same reasoning that led to its creation.

WRITING THE GOOD VISION 85

Ask the following questions at every status or leadership meeting through the course of a

project:

1. Does the vision accurately reflect our goals for this project?

2. Is the vision helping leads and individual contributors make decisions and reject
requests that are out of scope?

3. Are there changes to the vision we should consider that would make #1 and #2 true?

If the leaders of an organization can make the vision document a living thing, they

empower everyone else to do the same. The vision and goals stay healthy and can be a

continual source of motivation and clarity for the entire team.

This isn't to say the vision should be modified frequently. On the contrary, major changes

should be rare after the project is moving at full speed. But as with a constitutional

amendment, the possibility should exist that certain situations may justify change. And

that potential helps to keep everyone sharp and the vision's central ideas in everyone's

mind.

Summary
• Vision documents distill other planning materials into a single, high-level plan.

• Writing things down serves the author and the team. It provides the basis for discus

sion and a point of reference that doesn't rely on our fallible memories.

• The amount of detail in your vision document varies with the nature of the team and

the project.

• Team goals should derive from goals defined in the vision. Individual goals should
derive from the team goals.

• Good visions are simple, goal driven, consolidated, inspirational, and memorable.

• Volume does not equal quality. It takes more effort to be concise than not.

• Keep the vision alive by asking questions about the utility of the vision to daily deci
sions on the project.

Exercises

A. Pick a movie (or book) you find inspiring. What attributes of the movie made this

effect possible? Imagine you are the film director. Write a short vision statement for

the film, listing the attributes you want the finished film to have. If you pick a film,

watch the DVD commentary to hear how the film's creator constructed the film to

have those effects on viewers.

86 CHAPTER FOUR

B. Close your eyes and imagine what the project you are working on will be like when it

is finished. If the finished project were made into a film, what would its soundtrack be

like? Would it be muzak (the bland music you hear in elevators and waiting rooms)?

Dance music? Punk rock? Compile a soundtrack for the project, with the help of your

teammates, and distribute a CD or playlist to them.

C. Research visionaries. Select any two: Gandhi, Malcolm X, Thoreau, Buddha, Socrates,

Jesus Christ, or Confucius. What were their visions? How did they develop their

ideas? What work did they do to express their ideas? To promote and popularize

them?

D. Choose a day, and record/calculate what percentage of your time is spent reading

what others have written. Be sure to include text messages, email, instant messages,

web sites, billboards, and letters from home, as well as project-related documents.

Also, remember to count the time you spend writing down how you spent your time.

This exercise will help you understand why attention to writing a vision document is

important due to all of the demands on your readers' attention.

E. What can happen if someone's individual goals are in conflict with the team or project

goals? Whose responsibility is it to correct this? What actions can they take?

F. When it comes time for your team to write a vision or specification, print out copies of

the U.S. Constitution and leave it on any spec author's chair, with a note that says,

"They wrote a spec for an entire government in six pages. How many do you need to

spec a feature?" How does the team respond?

G. At the beginning of every project, make a communal list of jargon words to be

avoided. Pick words you know people will want to use, but which have better, clearer

alternatives (that you can offer). Put the list on a public wiki and allow people to add

words over the course of the project.

H. For fun, write the anti-vision. What is the worst vision document you can imagine?

What would it include? How would it be written and how long would it be? See if you

can come up with vision statements worse than the lame vision statements listed in

this chapter.

I. Identify every one on your team who you would trust to collaborate with you to

author a vision document. Write down the reasons why. If you had to pick one person

in your organization to be the vision document's primary author, who would it be?

WRITING THE GOOD VISION 87

CHAPTER FIVE

Where ideas come from

T he less-than-surprising truth about the originsof ideas is that they come from people.
No idea in the history of mankind has ever come from a pile of large rocks, a warm

mound of dirt, or a bundle of sharp, pointy sticks. Nor have ideas come from self-help

books, creativity seminars, or brainstorming sessions. While ideas might be presented or

consumed through these things, it's the people who create them that are the source. It

follows then that on projects, it's individuals—and not processes, methodologies, or com

mittees—who come up with ideas and find ways to use them.

This means there is nothing magical about ideas. We are all capable of coming up with

them (although some of us are better than others). Never forget that it's the fundamental

nature of humans and other creatures to use their creative powers to solve problems they

encounter in the world. Despite how little education we might get in our modern lives

for how to apply these skills, they are there. Our species is still around primarily because

we find ways to deal with challenges, and invent tools and strategies to help us overcome

them. (Although it is fair to ask whether our ability to invent things, as currently applied

in the 21st century, causes more problems than our inventions solve.)

Regarding projects, the ability to find good ideas is important from the first day to the

last. Good ideas are needed to make early planning decisions, develop designs, write

quality code, and deliver work that meets the client's needs. The scope of these ideas may

be different (i.e., some impact the entire project and others impact one line of code), but

the process for discovering and choosing between them is very similar. In this chapter

and the next, I will explain that process. In this chapter, the focus will be on how to come

up with ideas and do creative thinking. Chapter 6 will define how to manage the creative

process and work with ideas once you have them.

For the most part, I'll be using the design phase of work (see Chapter 2) to illustrate the

process of working with ideas. This is roughly the period of time after a high-level plan

has been created (e.g., vision) but before implementation has begun. If you don't

organize your project this way, that's fine: this chapter will still be of use to you. The

advice here is easily applied to any kind of problem-solving or idea-generating situation.

The gap from requirements to solutions
For reasons I can't fully explain, many people have difficulty planning creative work. In

most of the books I've read about software development and project management, there's

a shortage of coverage on how to get from a list of requirements for what should be

implemented to a good design. Schedules often have a date for when requirements are

supposed to be finished, and another date for when specifications are supposed to be

finished, but little instruction is provided for what goes on between those dates (see

Figure 5-1).

90 CHAPTER FIVE

FIGURE 5-1. Design is often seen as a mysterious process between early planning and completed

specifications.

Now this might be fine if the work involved is incremental, straightforward, and simple.

The ambiguity of that time is mitigated by the simplicity of the creative work that needs

to be done. Otherwise, a lack of definition for how to go about designing something sets

up the team to fail.1 If the problems are complex, the team will need time to evaluate

different approaches and learn about the best ones before they fully commit to building

them.

Like a traveler at a fork in the road, knowing where you want to go ("home, please")

doesn't tell you anything about the best way to get there ("all three of the roads, at least

from where I stand, look the same"). Smart travelers look for ways to minimize the

chances of going down a dead-end path. Perhaps they walk a short distance down each

road, or find another point of view (a hill, a mountain, a remote-controlled geocentric

orbiting spy satellite) that gives them more information. The further they need to go on

their journey, the greater the time investment for exploration probably needs to be.

There are two simple ways to fill in the gap. High-quality requirements are one option,

and design exploration is the other. Because they are highly related to each other, it's

common for these activities to overlap in time.

Quality requirements and avoiding mistakes

In Chapter 3,1 provided a basic explanation of requirements and their roles in the

planning process. Roughly defined, quality requirements effectively communicate the

needs of the customer and/or the goals of the project, with sufficient clarity to be

actionable for whoever will do the work. A good requirement might not define how to

solve a problem; rather, it might identify a problem clearly enough that someone with

the right expertise can confidently work toward solving it. Most software and project

teams I've encountered have at least an informal requirements process, possibly as simple

as email exchanges with bulleted lists of one-sentence requirements.

Requirements are critical. They act as the starting point for generating ideas and potential

solutions. If the requirements state "There will be a barn and it must be green," then

anyone doing design for the project will be thinking about different kinds of green barns.

This is helpful in two ways. First, it eliminates many ideas from possible consideration

1 Be afraid when a project is tasked with breakthrough work but has planned for straightforward
work. It's like expecting to do brain surgery with a first-aid kit. The goals and planning don't
match, so be prepared to fail in messy ways.

WHERE IDEAS COME FROM 91

(anyone showing sketches of blue spaceships can be corrected easily). Second, it allows

designers to ask questions to further explore the requirements. A designer can ask low-

level questions, such as "Is lime green acceptable, or only dark greens?" or "How many

square feet does the barn need to be?", or high-level questions, such as "What will the

barn be used for? Have you considered a loft? It's probably cheaper and may be better for

your needs." Depending on who has requirements and design authority (see Chapter 2),

different people will have the power to decide how the questions are answered or to

suggest changes to the question. But everyone should be encouraged to ask questions

and probe the requirements, which improves their quality.

So, the more attention paid to carefully written requirements, the better the odds that

designers will find solutions to meet them. If no requirements are written, then whoever

does the design is working at her own risk (i.e., if you're designing without requirements,

it's in your interest to draft some). As a rough guide to better requirements, here is a

short list of common mistakes to avoid in writing requirements.2

• Provide a plan for requirements negotiation and iteration. Because require

ments enable designers to ask questions, the odds are good that some of the questions

will be good enough to force a rethinking of the requirements. Whoever has require

ments authority should be planning for this and either begin discussions with design

ers early enough to incorporate them, or make provisions for modifications to the

requirements later on, after some ideas have been proposed. The more focused the

requirements are on specific problems to be solved, rather than specific ways to solve

them, the less need there will be to modify them.

• Hunt down erroneous assumptions. Often, requirements assume that the client or

user needs or wants something that he doesn't really need or want. Lists of possible

requirements may start in email or as informal lists, and everyone may assume some

one else has scrutinized and intensely reviewed them. If you're the PM, don't make

this assumption. Religiously ask clarifying questions, such as "Why do we need this?",

"What problem will this solve?", or "Whose requirement is this?", to push the

assumptions out into the light. Remember that it's always possible someone inno

cently misunderstood something or passed on erroneous information by accident.

• Hunt down missing information. The most glaring errors in requirements involve

errors of omission. This can be partial or complete. Partial means that an aspect of a

requirement is missing (e.g., the date field format isn't specified, although a date field

is), or that an entire requirement has been overlooked (the web site needs to be in

Greek and support Firefox 1.0). Missing information can mean two entirely different

things: first, the client doesn't care about this aspect of the problem; or second, the cli

ent does care but either didn't think about this aspect or forgot to put it down. Like

2 For more information, see Exploring Requirements:Quality BeforeDesign, by Donald Gause and
Gerald Weinberg (Dorset House, 1989).

92 CHAPTER FIVE

erroneous assumptions, it's the PM's job to flag bits of missing information and con

firm whether it's the result of the first or second issue.

• Define relative priorities to each requirement. As much as we'd like to get every

thing on our shopping lists, it's critical that requirements at least imply how impor

tant each one is, relative to the others. By doing it in relative fashion, it's much easier

for negotiations to take place between those with requirements authority and those

with engineering authority (for more on prioritizing, see Chapter 12).

• Refine or eliminate unintentionally ambiguous language. Words such as fast,

big, small, nice, pretty, and usable require relative measures to be understood. It's fine

for them to be left ambiguous, provided that everyone involved in the requirement

(client, boss, programmer, etc.) is comfortable with negotiating the answers later on.

Otherwise, it's in the interest of everyone involved to write requirements to be ambig

uous only where intended. Boundary cases ("Our home page must be at least as fast to

load in Firefox as www.cnn.com; preferably, it should be as fast as www.oreilly.com") are

often the simplest way to resolve ambiguities. As in this example, absolute require

ments (must have) and desired requirements (nice, but can live without) can be indi

cated easily.

Using one of the problem statements from Chapters 3 and 4, here's one way to write a

quality requirement:

Search results will be easy for most users to read quickly. Priority 1. Our goal

will be to incrementally improve the usability of our search experience. We will

redesign the current search result page to solve the top five customer complaints and

the top five issues found in the upcoming usability study of the existing design. The

newly designed page will be the results page displayed from searches entered into all

primary search entry boxes (navigation bar, home page, shopping cart) and, if at

negligible cost, from all search boxes.

There is certainly room for more detail, but many pitfalls of requirements have been

avoided in just a few sentences. Notice that the requirement is specific about intention,

but it is not specific about redesign for the page itself. The more detailed the requirement,

the more risks there are for the requirement to (unnecessarily) constrain the design. This

may or may not be desirable, depending on who has what authority and skill set.

Design exploration

Now that we agree (not that you have a choice) on the importance of requirements, we

can discuss how to explore ideas based on them.

Once requirements are in place, designers can explore the territory framed by the

requirements. There is a large space, called the problem space, of potential ways to solve

any given problem. Depending on the requirements, this space can be very large; for

example, there are an infinite number of ways to design a home, a meal, an accounting

WHERE IDEAS COME FROM 93

system, a web site, or whatever it is that you're being paid to do. So, until you have some

sense of what the possibilities are (because you've explored this particular territory

before), it's unwise to commit to anything discovered early on. The first ideas you find

are unlikely to be very good: you're still learning your way around the problem space

and developing a sense for the possibilities.

Figure 5-2 illustrates the problem space as originating from requirements. As a designer

starts exploring ideas for satisfying the requirements, the problem space begins to grow.

The problem space grows because each early question or sketch exposes more decisions

and opportunities than could be seen before. For example, the requirements might state

"The web site must provide full-text searching of all pages," but it probably won't say

which search engine should be used, how it will be configured, or how its user interface

will be integrated into the rest of the web site. Instead, someone has to explore what the

different possibilities are—and there will be many. (However, the problem space

eventually narrows; we'll talk about that in the next chapter.)

Problem space of
po-ter\4iaJ designs

FIGURE 5-2. Design ideas grow out from problem definitions.

Depending on the nature of the requirements, there may be different kinds of boundaries

on the problem space. If there is only a week of time to search out alternatives, and the

final design must cost only $10 to build, the problem space is very limited. A designer will

be constrained to a narrow set of alternatives. In fact, it's entirely possible to create

requirements that are impossible to satisfy (e.g., make a perpetual-motion machine or

solve NP complete problems in polynomial time). Time, budget, expertise, and specific

design criteria all impact the shape or size of the problem space. This is in part why

requirements definition has such a large impact on the design process.

It also explains why there must be a feedback loop between design and requirements. If

some requirements turn out to be impossible to satisfy, given the constraints of a problem

space, there must be some way to adjust them. Alternatively, if a designer finds a

fantastic idea that satisfies the project goals, but requires adjusting a requirement, it's in

the interest of the client/customer/business to consider making that change.

It's not surprising that innovative work often occurs when one person has both

requirements and design authority (i.e., someone in a start-up company, an R&D lab, or

a group that has given him lots of power). He can settle design and requirements changes

all on his own.

9H CHAPTER FIVE

Fearof the gap and the idea of progress

Perhaps many people skip over the design process because they're afraid of exploration,

especially when others are watching them do it. When we explore our own work (say,

trying to optimize an algorithm or revise a document), no one is there to witness the

process. We're free to try embarrassing or strange ideas because the only judgment we

face is our own. But with design as a scheduled activity for a team, anyone doing design

will have her explorations visible to many other people. Any sketches or prototypes she

makes will need to be shown to others and discussed openly. If people don't trust others

to give them constructive criticism, it's not surprising that this process intimidates them.3

And unlike fixing bugs or producing documents, in design work most people don't know

how to measure progress. Instead of watching a number get bigger or smaller, during

design a manager must rely on his knowledge of the design process (which may be

limited) or his subjective judgment of the creative progress (which he may not have or

trust). This is compounded by the fear that too much structure will restrict creative

people from doing their creative work, but not enough structure might send the project

straight for a cliff. (As a final plug for Chapter 6,1 promise I'll explain how to deal with

this challenge in the next chapter.)

On the whole, I think that creative work—whether related to building bridges, designing

spacecraft, or engineering web sites—suffers from many stereotypes. Managers and

leaders need to be the first people to get past those labels. Specific to finding ideas, two of

the worst stereotypes and misperceptions are represented by the following evil phrases:

"there are no bad ideas" and "think out of the box." By examining these phrases and the

erroneous ideas behind them, I'll provide some simple ways to think about creativity and

give advice on how to find good ideas.

There are bad ideas

I do not know where the phrase "There are no bad ideas" came from, but I'm certain it's

wrong. I've seen the phrase used in both television commercials and in brainstorming

meetings (and quite possibly in television commercials about brainstorming meetings).

This cute little phrase is typically used in an attempt to help prevent people from filtering

out ideas too early in the creative process—a noble goal indeed. But when applied to

almost any other situation involving problem solving or creative thinking, "There are no

bad ideas" could not be more frustratingly false. I have incontrovertible evidence that

there are an infinite number of awful, horrible, useless, comically stupid, and

embarrassingly bad ideas. If you pay attention to the world around you, it's pretty clear

that people are coming up with new ones all the time.

3 See "How to give and receive criticism" at http://www.scottberkun.com/essays/35-how-to-give-and-
receive-criticism/.

WHERE IDEAS COME FROM 95

Even with a top-notch set of requirements, most of the possible designs that exist or

could be created will not solve the problems or satisfy the goals (see Figure 5-3). In fact,

the space of good solutions for a problem is much smaller than the space of nonsolutions.

Basic logic bears this out: if I ask you to climb Mount Everest, there are probably a

handful of different routes that safely lead to the top. But if I ask you not to climb Mount

Everest, you have an infinite number of ways to succeed (e.g., picking your nose, reading

Dickens, climbing other mountains, climbing other mountains while picking your nose

and reading Dickens, etc.). There are always more ways not to do something than there

are to do it (a fact sure to generate much rejoicing among cynics and slackers

everywhere).

The minority of
designs -thai so/ve

4he probfems

FIGURE 5-3. Most of the possible designs will not lead to success (and the ones that will are not all

bunched together, as this diagram might imply).

However, the problem is that it's difficult to know early on which ideas will lead to true

solutions. Unlike climbing Mount Everest, most projects cover territory that isn't well

mapped out. You might be using cutting-edge (i.e., unreliable) technologies, trying to

solve a new or complex set of problems, or working with people who don't have the

needed expertise. There are 1,000 reasons why your current project may be different

from projects done in the past, and that difference means that new thinking (designing) is

required to be successful.

Good or bad compared to what?

Of course this gets even more difficult because it's not always easy to know whether the

idea in front of you is good or bad. Ideas are impossible to evaluate in the abstract. They

are good or bad only in how they solve some particular problem or achieve a desired

effect (e.g., make someone laugh, make things explode, etc.). As I stated previously, if the

problem is complex, it's rare that you'll find a complete solution, which means that a

good solution is good only relative to its alternatives. If you have only one idea on the

table, there's no basis for comparison and no way to properly evaluate it. So, if you ever

96 CHAPTER FIVE

find yourself without alternatives to evaluate against each other, or a clear problem to

solve, it's very difficult to judge the value of an idea.4

Another way to think about this is that while the discovery of E=mc2 was certainly a nice

piece of work by Mr. Einstein, it's not of much use to a friend struggling to balance her

checkbook, or to someone who is currently lost in the Sahara Desert (not to mention

someone lost in the desert and trying to balance her checkbook).5 Is E=mc2 a good idea?

Perhaps it is if you widen your requirements and problem space to include the general

idea of improving your knowledge of the universe. Perhaps it isn't if the only thing you

care about is your friend in the Sahara. Ideas look good or bad only against some kind of

background. No matter how smart or clever an idea seems in the abstract, when it comes

to projects that must actually build something to solve some kind of problem, the failure

to distinguish the abstract from the pragmatic always leads to trouble.

It's common for smart people to be led astray from the real problems at hand because of

the abstract qualities of their ideas. Ideas can be elegant, clever, or creative in how they

relate to other ideas we are familiar with—even when they don't solve real-world

problems. Sometimes an idea may make someone feel good because it validates a claim

he made or works to his political advantage. For example, a programmer might argue for

idea A instead of idea B because A is more elegant—given the object model he's

designed—even though idea A is less satisfactory given the customer's requirements. It's

possible his personal requirements are at odds with the project requirements, but he

hasn't noticed the difference. So, always make sure to sort out what your real

motivations are for pursuing, or defending, an idea.

Thinking in and out of boxes is OK
The second most notorious and misleading phrase regarding ideas, "Think outside the

box," has its origins in a classic brainteaser-type puzzle. The puzzle, shown in Figure 5-4,

asks the puzzle victim, I mean participant, to connect all nine dots using only four

straight lines—without lifting the pen off the paper. It turns out that this is impossible,

unless the victim uses the space beyond the boundaries of the dots and thinks (drum roll

please) outside of the box. The point is supposed to be that by erroneously assuming that

constraints and boundaries are part of a problem, we limit our thinking and prevent

However, a simple formula for how to make water and a compass from sand would win best
idea in a "Mr. I'm-lost-in-the-desert" competition. This is an example of a well-defined problem
that is impossibly hard (simple but difficult). When people complain that requirements take the
challenge out of problem solving, know that they're full of crap. Problem definitions point at
which mountain to climb, but say nothing about how to get to the top.

One example is minoxidil, a medication intended to treat high blood pressure. It turned out to
be effective against an entirely different problem: hair loss. Judged against one criterion, the for
mula for minoxidil was a failure; against another, it was a success. Was the formula a good idea
or not? It depends which context you consider.

WHERE IDEAS COME FROM 97

ourselves from finding solutions. It's a charming, almost sweet, point, and I'll give you a

moment to savor it before I tear it to shreds.

FIGURE 5-H. The "Thinkoutside the box" puzzle, with solution.

Puzzles and brainteasers aside, it's not eliminating boxes that is most difficult—it's

knowing which boxes to use and when to use them. Constraints are ever present: we

require air to breathe and food to live. The laws of physics bind objects together.

Sometimes constraints are helpful in solving problems; for example, say what you will

about gravity, but I'm grateful that I can assume when I put a pointy rock down on the

ground, it's not going to fly up and hit me in the face.

Thus, the real craft of problem solving and creative thinking is knowing which constraints

to use or ignore and when to do so. I've seen super-creative people arrive at my door

with fantastic ideas three weeks past the last possible date I could have used them. I've

also been in brainstorming meetings for tiny, under-funded projects—already behind

schedule—where people offered their "biggest, most radical, out-of-the-box ideas," which

only infuriated the entire team because not a single one of the good ideas came

anywhere near the final project plan.

Someone has to lead a team in deciding which constraints/requirements can be ignored,

bent, twisted, or manipulated, and which must be followed to the line and the letter.

Being creative often involves working within a constraint, with limited resources or time,

and finding cunning or clever ways to do better than was thought possible (see the film

Apollo 13). Big, radical ideas are rarely needed to succeed. More often, it's a handful of

basic, solid, good ideas—applied correctly—that are needed.

My fundamental point is this: do whatever you want with the box. Think in the box, out

of the box, on the box, under the box, tear apart and make a fire out of the box,

whatever, as long as you manage to solve the problems identified as the goals for the

project. Make the boxes irrelevant in favor of understanding the problems, cultivating

people's best creative energy, and aiming all the team's power in the same direction. As

Thomas Edison said, "Hell, there are no rules here. We're trying to accomplish

something." Make sure any rules you create serve the process and the people in it, not

the other way around.

98 CHAPTER FIVE

It's also critical to consider the following questions: how do you get people thinking

about the same problems? How do you bring good ideas toward you? Want to guess at

where you might start? Is this paragraph annoying you yet? Well, surprise. Things often

start with asking the right questions. (Really? Yes. Are you sure? Positive. Can we get on

with it then? Indeed.)

Good questions attract good ideas
"Computers are useless. They can only give you answers."

—Pablo Picasso

To dodge a bunch of unwanted college requirements, I studied logic theory and

philosophy as part of my undergraduate degree. Apart from the many things I learned

and forgot, one thing I learned and remembered was how to ask good questions. I had

good instincts for logic, but as the only undergraduate in graduate-level logic theory

classes, I was always behind the rest of the group. I quickly learned that if I didn't ask

carefully worded questions to peers or professors, I'd receive volumes of complex

information that didn't help me at all. In fact, I've found that many engineers, doctors,

and other intelligent experts tend to be very happy to share what they know, regardless

of whether it's what I'm asking about. People just get lost in their own knowledge.

Carefully asked questions are one way to lead difficult conversations in useful directions.

As an example, I had this recurring experience with logic professors that forced me to pay

attention to how I asked questions. It would start with me asking something like, "Can

you explain this one part of Godel's incompleteness theorem?" The professor would

answer, "Certainly. You see, all proof systems can be reduced to an essential set of

characteristics defined by the core recursive primitive functions." I'd say, "Uh, OK. That's

nice. But can you explain this one line here?" and I'd point to this tiny line in the proof,

circled in thick red ink and with a giant question mark next to it. The professor would

nod his head and say, "Oh, that, of course. <Pause>. Well, the history of logic proof

systems stems from the noble attempt to express aspects of existence through a verifiable

system...." I'd say, "Oh, god. No, this here <pointing againx What does it mean? How

does it relate to the line above it?" He'd answer with, "Certainly, certainly. You see, proof

theory relates to logic theory because of the intangibility lemma between sets of

nonordinal but infinite value...." Finally, I'd give up and head for the nearest pub.

I learned that without good questions, I'd never get good answers. Sometimes it was

difficult to get good answers even when asking good questions. But I did manage to pass

those classes, and I later found that at Microsoft, and in the tech sector, those question-

asking skills were of great value. The communication problems I faced in the classroom

were similar to problems I'd face with engineers, lawyers, executives, marketers,

WHERE IDEAS COME FROM 99

designers, and customers. People often insist on telling you things that have nothing to

do with what you need to know. But my logic class experience aside, good questions,

asked firmly, help move conversations in useful directions.

There are three kinds of questions to consider specific to creative problem solving:

focusing questions (good), creative questions (also good), and rhetorical questions (evil).

Focusing questions

A good focusing question draws the attention of a person or a group to the absence of

something important, useful, or even central to the work being done. These kinds of

questions narrow the scope of discussion in some way and amplify the attention given to

certain aspects of a situation. It's the equivalent of "Don't bother with that for the

moment, look here." Assuming the recipient of the question pays attention to it, a well-

considered and directed question can be more useful than any number of answers to

lesser questions. "Is there any way to use the existing code base to build a system that

meets this performance requirement?", or "How will users know when to go to this

screen?", or "Is it possible to mix peanut butter with chocolate?" In just a few words,

good questions identify an essential element of the problem (or solution)—by-passing all

of the secondary and nonessential information—and create a space for an answer to be

born. Smart people know instinctively when they hear a good question, or a good

problem, and will enjoy attacking it at full speed once it's been recognized. Good

questions act like magnets, attracting clever and creative people toward them, and

bringing all of their potentially good ideas along for the ride.

Great project managers and creative thinkers are masters of questions. They sense when

things are getting off track, recognize the essential elements missing from a discussion or

a plan, and inject them back in with a carefully timed and phrased question. On strong

teams, even if the project manager asks the wrong question, the fact that he's

interrupting the discussion at the right time will cause someone else to respond with the

right one. "Well, Scott, actually we rejected that requirement. So, a better question is 'are

we sure this new design meets the updated list of requirements?'" And after a short

discussion, the entire team is now re-energized and refocused around an improved view

of the work to be done. Good questions are catalysts: they recombine the knowledge and

energy of a discussion—enhancing, refining, and crystallizing it all at once—and cast that

energy out again toward more fruitful terrain.

I've found that after building trust with a team, the most powerful question in all of

project management, creative thinking, and problem-solving is:

What problem are you trying to solve?

100 CHAPTER FIVE

Provided you have enough credibility that this question isn't seen as annoying manager-

speak, it can be used in almost any discussion, at any time early or late in a project, to

help ascertain two things. First, that the team can identify what it is they are really trying

to figure out; and second, that everyone in the room at the time has the same answer

(there's nothing worse than five smart people working together but unknowingly trying

to solve different problems). This works magically well for anything from high-level

strategy discussions to low-level detail decisions of code syntax, test-case minutiae, or

design production issues. It's such a powerful and useful phrase that I made it into a

poster and hung it up above my desk. I've found that whenever I feel like the design

thinking and idea generation are confused, or people are saying conflicting things, I'm

not alone—others are just as confused. So, by throwing the master question down, I

make sure everyone gets reset and recharged around whatever it is we're supposed to be

doing.

Creative questions

A completely different kind of question, a creative question, works in the opposite

direction from focusing questions. Creative questions point to directions that haven't

been considered but should be explored. "How many different ways can we present this

information to customers on the home page?" or "What else can the search engine

database be used for?" Design discussions usually thrive on exchanges of these kinds of

questions between teammates, with lots of thinking, sketching, and exploring of answers

in between. Good creative questions usually increase the number of alternatives and

broaden the scope of the discussion (although not necessarily the scope of the problem).

As we'll see later in this chapter, creating a wide pool of ideas is often the only way to

arrive at good ideas. Asking good questions sets up a creative person to go in the right

direction, or, as is often the case, in a wrong direction that eventually helps people figure

out what the right one is.

Rhetorical questions

But be careful with the creative question's evil twin: the rhetorical question. Rhetorical

questions are the insincere kind, asked without any intent for a literal answer. Like a

parent scolding a child ("What were you thinking when you ate an entire box of Fruit

Loops?" or "How could you let Sally cover the television screen with peanut butter?"),

rhetorical questions tend to end discussions. They imply guilt and negative judgment.

They assume that the asker of the question knows more than the recipient, and they

unfairly place the recipient in a compromised position of power. People who have

authority, but don't know how to use it well, often ask rhetorical questions (e.g., a

frustrated boss or teacher). By asking questions in this manner, they rarely get the

response they were after. If used carefully, rhetorical questions can be funny or can shake

WHERE IDEAS COME FROM 101

people up who need to be shaken ("Come on guys, is this really the best you can do?").

But they should be used sparingly, even for this purpose.

Both focusing and creative questions help draw out the raw materials needed for good

thinking. It takes a careful hand to know when to use which kind of question and when

to simply contribute to discussions and volunteer ideas. Of course, if the team is

producing good work and naturally stays focused while being creative, there might not be

a need to consciously seek out questions. After all, it's the quality of the ideas that's

important in the end, not the questions or specific processes that led to them.

Bad ideas lead to good ideas
I first saw a designer design something when I was a junior in college. I didn't really

know what designers did, and I thought that—for the most part—they made things look

pretty: designer jeans, designer handbags, etc. Anyway, this young man was designing a

new kind of portable stereo. He sat at his desk in the design department undergraduate

studio, which was a big, open space with lots of tables, sketches, prototypes, and

blueprints all over the place.6 He was sketching out different ideas, each one an

alternative design for the stereo. I asked him what he was doing, or more precisely, how

what he was doing fit into "designing"—whatever that meant to him.

He thought it over for a moment, smiled, and told me, "I don't really know what the

good ideas look like until I've seen the bad ones." I nodded politely, but dismissed him

entirely. I chalked up my inability to understand what he was saying to my perception of

him as an odd, creative-type person, and not to my own ignorance.

It was only after I'd spent a couple of years designing software that I understood what he

was saying. I'd learned through experience that good ideas often require the remains of

many bad ideas. Without making mistakes and oversights in many different attempts, it's

often impossible to find the path of ideas that leads to success (see Chapter 1). Perhaps it's

only when an idea doesn't work and we're confronted with failure that we're forced to

review our assumptions. And only then, when we step back with more information, can

we see the path that wasn't visible to us before.

So, the best ideas and designs require momentum. They don't arrive as the result of a

magic spell or force of will ("Be brilliant, now! I mean now! How about...now!"). Every

drawing, sketch, or prototype, no matter how ridiculous or pathetic, teaches the designer

(or engineer or scientist) a little something more about the problem, and increases the

odds that the next attempt will be better than the last. Every great mind that has pursued

6 It was much like the workplaces described in Peopleware, by Tom DeMarco and Timothy Lister
(Dorset House, 1999), or PlanningExtreme Programming, by Kent Beck and Martin Fowler
(Addison-Wesley Professional, 2000).

102 CHAPTER FIVE

the solving of complex problems in the world has done so surrounded by large piles of

crumpled paper. Some have lied about this, others have embraced it. If nothing else, this

notion that bad ideas lead to good ones frees us to start designing however we choose.

We should fully expect to get our hands dirty and make lots of early mistakes because the

sooner we make them, the sooner we'll move on to better ideas.

Good designs come from many good ideas

Solving a single problem isn't the goal of a project—things are much harder than that.

Most software projects involve the solving of dozens of problems, preferably in a way that

customers can use easily and that can be built by the engineering team in a limited

amount of time. The sheer number of points of integration between parts and

components involved in designing and engineering an automobile, a web site, or a

software program demands that designers proceed through many revisions with the full

expectation that it may take dozens of attempts and adjustments to get it all right.

Revision and refinement are the name of the game, and part of the process.

All creative pursuits from engineering to the arts share this fundamental truth, as some

well-known thinkers and creators have stated:

"The two most important tools an architect has are the eraser in the drawing

room and the sledgehammer on the construction site."

—Frank Lloyd Wright

"The physicist's greatest tool is his wastebasket."

—Albert Einstein

"There are days when I make five of them, but one has to reckon that of 20

drawings, only one will be successful."

—Vincent Van Gogh

"There is no such thing as failure. Only giving up too soon."

—Jonas Salk

"There's a way to do it better—find it."

—Thomas Edison

"Fail. Fail Again. Fail Better."

—Samuel Beckett

"If you want to succeed, double your failure rate."

—Tom Watson, IBM

"I write 99 pages of shit for every one page of masterpiece."

—Ernest Hemingway

WHERE IDEAS COME FROM 103

While the goal might not be to make every software project into a masterpiece, any

project requiring design and problem solving must be given enough time to explore a

range of alternative ideas. They also need time to integrate concepts and components.

The cynical and the cheap might choose to provide fewer resources for these activities,

but the cost will always be paid in the lower probability of actually solving customer

problems.

But even if you buy all this, and you work in an organization that provides time for

design, things are still difficult. Finding and creating useful ideas require different skills

than most of us learn in school or are generally taught in the workplace. In fact, I myself,

despite years of study and work in design, had to go back to school to get a new lesson on

where ideas come from.

Perspective and improvisation
On a dare from Ayca Yuksel and Vanessa Longacre, two former co-workers at Microsoft,

the three of us enrolled in an improvisational comedy class at a community college. After

only the first day, I learned that my terror at the proposition of being funny on command

was entirely unfounded. I discovered that most people, if they learn how to pay attention

(which the class taught us to do), can find humor in many ordinary situations. It's all

about learning to see the things that often go unnoticed, and making connections

between them.

When I returned back to work and the world of projects and designs, I realized that the

same was true about problem solving. Good problem solvers notice things other people

don't. They see more detail, make more associations, and have more depth of perception

to draw on to find connections between things. In an interview in Wiredmagazine,7 Steve

Jobs had this great piece of creative commentary:

To design something really well you have to get it. You have to really grok what it's

all about. It takes a passionate commitment to thoroughly understand something—

chew it up, not just quickly swallow it. Most people don't take the time to do that.

Creativity is just connecting things. When you ask a creative person how they did

something, they may feel a little guilty because they didn't really do it, they just

saw something. It seemed obvious to them after awhile. That's because they were

able to connect experiences they've had and synthesize new things. And the rea

son they were able to do that was that they've had more experiences or have

thought more about their experiences than other people have. Unfortunately,

that's too rare a commodity. A lot of people in our industry haven't had very

diverse experiences. They don't have enough dots to connect, and they end up

7 Issue 4.02, February 1996.

10H CHAPTER FIVE

with very linear solutions, without a broad perspective on the problem. The

broader one's understanding of the human experience, the better designs we will

have.

The only criticism I have of this quote is that it implies something special about creative

people that can't be obtained by "noncreative" people. I don't believe people are born

into one of two exclusive piles of creative geniuses and unimaginative morons. If the

improv class I took was any indication, most people can learn to become more observant

and develop their sense of awareness about the world, themselves, and the connections

between things, satisfying Jobs' criteria.

Everyone in the class (see www.jetcityimprov.com) invented ways to be interesting and

funny, despite how almost none of the students—all adults, all from different

backgrounds and professions (and a few from other countries)—had any comedy or

improvisation experience before. I think improv and other good creative exercises draw

on our universal ability to make use of what others show us, and help us to see more

clearly and deeply by paying more attention. I fully believe that a competent, but not

exceptional, software developer might improve most by studying the construction of

skyscrapers, bridges, or even musical composition, than exclusively reading within her

domain.

Stepping outside of a specific field (even for just the few hours required to read a book or

watch a film) and then looking back is often the only way to really understand it for what

it is. Mastery of something should be like standing on a peak in a mountain range: it lets

you take pride in what you've accomplished, but it also makes you realize how many

other mountains there are with equally good views.

I found that improv class helped me to step out of my job and my relationships and grow

in ways I couldn't while inside those things. Helping this along were the four rules we

used during in-class games to help us stay aware and keep ideas flowing. I found later on

that they transferred easily into design discussions and small-group brainstorming

meetings—situations where the goal was to seek out new ideas and create a big list of

concepts and thoughts to be reviewed later.

I admit that, to the skeptical and the sarcastic (such as the author), lists of rules to follow

can seem like happy fascism (tyranny with a smile). However, most times I've tried

them—even with tough, quiet, cynical, pedantically sarcastic, overly intellectual, and

low-social-energy teams—they've helped. They consistently led to better discussions,

even if those discussions started with the team rejecting these rules and coming up with

their own.

WHERE IDEAS COME FROM 105

Improvisational rules for idea generation

To do the improvisational game for brainstorming (warning: it's not good for deep design

thinking), you need a few things: a small group of people (2-8), a comfortable room, a

nice chunk of dedicated time, at least one problem definition relevant to the project, and

someone at a whiteboard to write down short descriptions of each suggested idea. If

people need the whiteboard to explain ideas, that's OK. But since the goal is volume,

detail shouldn't be the focus.

To start, someone acts as facilitator and stays by the whiteboard. There should be a

problem statement that defines what the group is generating ideas for. This can come

from the problem statements or requirements, or it can be something you come up with

on your own. Once the problem is agreed upon, people start offering ideas, which the

facilitator writes down.

The game begins when someone suggests an idea and a discussion ensues. There are four

rules to follow for that discussion:

1. Yes, and.... When someone else offers a thought, the only allowed response is "Yes,

and <insert something hero." Your first attempt must be to continue his line of

thinking. Generally, you take his idea or point and move it forward or redirect it, such

as "We could use a search box here...", "Yes, and it would be smart enough to bring

the user to the right place when they type something in." Or, "Yes, and it could make

use of the new search engine we're building and return faster results." The intention is

to keep things moving positively and to develop a habit of listening to others in order

to help them with their ideas, instead of just waiting to say your own.

2. No half-assing. It's not acceptable to offer an idea of your own, followed by "Sorry, I

know it's lame" or "I'm not good at being creative." Half-assing means not being

committed to what you're saying. What you say doesn't have to be brilliant for you to

stand behind it. It's OK for your idea to be bad: it just might trigger someone else to

say something better. If you trust the person next to you to say "Yes, and...", she

might be able to do something interesting with your "lousy" idea that neither she nor

you would have thought of otherwise.

3. No blocking questions. Questions put ideas, and the people asking them, on the

defensive. If you say, "Why the hell would you do that?", you're framing a new

context around what the other person said that is not improvisational—it's

judgmental. It assumes that there is no good reason for it until proven otherwise,

which isn't the right atmosphere for open and free thinking (although it is the right

atmosphere later on in deeper design discussions). Instead, test your own intellect:

how can you direct their initial idea into something useful? Make whatever

assumptions or leaps of faith you need in order to make sense of someone else's

statement. Roll with it and keep going. Short, clarifying questions might be OK on

occasion, but don't make them the focus. It's better to move on to the next idea than

106 CHAPTER FIVE

narrow in on individual ones. If raw idea generation is the goal, the volume of ideas

per hour is more important than the quality of each idea. Saying nothing can often be

better for the overall goal of idea generation than making a point of how stupid one

idea is.

4. Make the other guy look good. No one should keep score or keep track of who said

what. Rewards should go to people who help amplify, express, or draw out the best

ideas from others in the group. Because the odds are that whatever gets designed will

be built by everyone in the room, there's no sense giving out gold stars or categorizing

ideas based on their originator. If the design process starts as a healthy communal

process, where the best ideas rise regardless of their origins, the rest of the project will

likely have the same spirit.

The result of this kind of exercise should be a list of rough and sketchy ideas that

someone will sort through later. When he does, he'll pick out the ones interesting

enough to pursue or to discuss in more detail. Because these follow-up discussions are

less about raw idea generation, the improv rules don't matter as much—although the

spirit of them should carry on.

More approaches for generating ideas

If you're not ready for improvisational games, or if you want a more straightforward way

to generate ideas, here are some traditional suggestions:

• Pick up a book on creative thinking. There are many good ones to choose from.

Two of my favorites are Thinkertoys, by Michael Michalko (Ten Speed Press, 1991), and

Six ThinkingHats, by Edward De Bono (Back Bay Press, 1999). Many other popular

books are very good as well, but I've gotten the most mileage out of these two.

• Pay attention to when you feel most creative. Figure out what environments

make it easiest for you to be creative. Are you alone? Are you with people (which

people)? Is music on or off? What music? Everyone is different, and you won't con

nect with your own creativity until you spend some time figuring out what environ

ments inspire you. It might involve being in a funky coffee shop, meditating on a park

bench, or watching the sun set slowly over the skyline behind the Brooklyn Bridge.

• Recognize that persistence contributes to creativity. People who appear cre

ative don't necessarily come up with ideas any easier than you do. But they may

spend more time exercising those parts of their brains and keeping them flexible. Cre

ativity is a skill just like any other, and while we don't all start out with the same gifts,

anyone can get better at anything if they invest enough energy in it.

• Purchase the brainstorming card deck, ThinkPak, created by Michael

Michalko. It's a set of playing cards that are designed to help individuals or groups

come up with new ideas for any kind of challenged There are other sets like this that

you can find, but I've had more success with this one than others.

8 ThinkPak is available at www.amazon.com.

WHERE IDEAS COME FROM 107

The customer experience starts the
design

"Technological visionaries can never recognize the distinction between the

feasible and the desirable."

—Edward Mendelson

If the best architecture in the world is written with the best object models, finest

algorithms, and fastest yet most reliable code base ever, it can still be entirely useless if

the customers for whom that work was done can't figure out how to do what they need

to do with it. It would be a waste of those algorithms and those man-hours of

engineering effort because no one will ever experience the quality of the completed

work.

The only insurance against this is to start the design and engineering effort from the top

down—from what the customer will see on the screen, down to the high-level

components, then down to the work items. As soon as rough concepts have been drafted

for what the user will experience, the engineers and technologists should respond with

how well what they've been thinking about fits against those concepts. Can the designs

be built? What compromises might be needed? What constraints need to be considered?

The work continues, with discussions going back and forth between layers of the design,

and different experts on the team, making sure that as things progress, the integrity of

the user experience is maintained, without violating what's possible (and probable) from

the engineers. The design thinking will be moving in two directions: from the desired

customer experience down to the technology, and from the practical technology up to

the customer experience (see Figure 5-5).

Ci/s-fo/ner experience Customer experience

Technology Technology

FIGURE 5-5. Thebest design process integrates customer-centricdesign with practical considerations for

the available technology. Ifone is designed in isolation, the other willalways be compromised.

The brainstorming sessions should clarify how and where to start design work. Many of

the early ideas generated in brainstorming probably describe some way to design the

system to solve a problem. Each one of those ideas has at least one visual

representation—in terms of how the software or web site would actually look to someone

trying to use it—that can be sketched out and discussed without writing a single line of

108 CHAPTER FIVE

code. (If the project is an embedded system or an OS kernel—systems that have no

tangible user interface—attention should be paid to which conditions are never

acceptable.)

Coming up with those representations, sketches, early drawings, or in some cases

prototypes, is the first step to understanding the idea. If it can't be drawn and can't be

sketched, it certainly can't be built. UML and Visio diagrams are not the same thing as a

design sketch. Diagrams are abstractions. They don't show what the user will see, and

therefore, they can hide all kinds of problems and details that need to be thought

through.

Here is one of the sample problems I listed in Chapter 3: "It is hard to find commonly

used items on the home page." Let's assume that after a brainstorming session, three

decent ideas were found:

1. Dynamically prioritize the page based on what people use.

2. Get rid of stuff people never click on.

3. Organize the home page into groupings that make sense to customers.

Before any engineer thinks about how to build these things, someone has to consider the

ideas' merits from the customer experience perspective. It might turn out that as

wonderful as these ideas seemed in the abstract, no one in the building can come up with

a good design9 that incorporates them in a way that makes it easier for customers to do

the work they need to do. For this reason, it's in the team's interest to start with the

customer experience: it's the easiest way to eliminate unneeded work, clarify what design

will be built and why, and reduce the odds of having to make big changes later.

Managing this process isn't easy, but doing it poorly is better than not doing it at all.

A design is a series of conversations
With a few sketches of potential user interfaces, real design work can begin. An informal

walkthrough of the sketches with engineers, testers, and marketers can begin the real

conversations that lead to progress. An engineer can give an off-the-cuff

recommendation to a designer about the work implied or suggest changes to the design

that might make it easier to build. Many good questions will be asked in both directions.

The engineer may also be able to make the designer aware of options that are technically

possible but of which she wasn't aware ("Oh, with the new flux capacitor we're building,

Recommendations: Steve Krug's Don'tMakeMe Think (New Riders Press, 2005) for general prin
ciples of web design; GUIBloopers, by Jeff Johnson (Morgan Kaufmann, 2000), which outlines
common UI design mistakes. Check out http://www.upassoc.org/people_pages/consultants_directory/
index.html to hire a usability or design consultant, or contact the author at www.scottberkun.com/
services.

WHERE IDEAS COME FROM 109

you can eliminate that screen"). The earlier this discussion can start, the faster the

conversation becomes strong, and the more ideas that can be raised, considered, and

reviewed.

It's important that everyone sees the process for what it is: a series of attempts,

discussions, questions, and introspections that repeat until satisfactory proposals are made

(eventually documented in specifications). If someone doesn't want to participate in this

fluid kind of work, they should release some of their authority in the decision-making

process to those who do. Designing is not the same as engineering, and although having

engineers involved in design tends to improve the designs, it's better to remove

individuals from the heart of the process than to try and change the process to satisfy an

individual.

If the goals for the project are clear, and the problems to solve are identified, the design

conversations that ensue will be good-natured. Disagreements will happen, but if

everyone is trying to solve the same problem, the conflicts will go only so far. And given

the points I've made earlier in this chapter about the value of perspective, these problems

may lead to people expanding their perspectives. Like the rules of improvisation suggest,

one person's idea can be a launching point for someone with a different background or

opinion to suggest something entirely unexpected and significantly better than what was

originally proposed.

"I like working with good people because if I come up with an idea, they come

up with a better idea, then I come up with an even better one, and so on: it's a

leapfrog process, and the work becomes much better than it would be if Ionly

did exactly what I want."

—Terry Gilliam, film director

The kind of collaboration Gilliam describes is possible only when a team trusts each

other. It's often managers and leaders who have the responsibility of creating trusting

environments and who need to be open to good ideas, regardless of their origin. We'll

talk more about this in Chapter 12.

Summary
• Many teams don't properly manage the time between requirements and specifications.

• Quality requirements and design explorations are the best use of that time.

• Ideas are good or bad only in relation to goals or other ideas.

• Constraints are useful in finding ideas, but thinking outside the box isn't necessarily

the answer. Sometimes the best solution is finding a clever way to work within the

constraints.

• Questions, perspectives, and improvisational games are tools for finding new ideas.

110 CHAPTER FIVE

• The best place to start with design ideas is the customer experience.

• Ideas develop into designs through conversations between different people with differ

ent kinds of expertise.

Exercises

A. Find someone you think is more creative than you are. Ask her where she gets her

ideas, and what habits she has to cultivate creativity. Pick one habit she uses and

practice it for a week. (If you can't think of anyone, pick Picasso, Einstein, or someone

famous for creative thinking in your field.)

B. Do you think requirements help or prevent your creativity? How can you create

requirements so that they help you find creative ideas?

C. What is the craziest idea you've ever suggested to someone else? Can you think of a

way to make the idea even crazier now?

D. What is the wildest idea you've ever had that you have never told anyone else? Why

not? What were you afraid of? How is this fear related to your ability to be creative at

work?

E. Design exploration means outcomes are uncertain, and following what seems to be

the best ideas may not provide expected results. How can a project leader ensure the

team's confidence isn't shaken when a favorite idea is killed, or star prototype is

abandoned?

F. What problem are you trying to solve by reading this book? By doing these exercises?

Is there any situation where the question, "What problem are you trying to solve?"

isn't useful?

G. Pretend you are working on a redesign of your house or apartment. Make a list of 10

focusing questions you can ask to stimulate creative thinking. Then make a list of 10

creative questions.

H. In your next brainstorming meeting or creativity session, write the list of rules up on

the whiteboard. Ask everyone to do an experiment, just for 10 minutes, where

everyone has to follow the rules. What effect did it have? Are there rules you'd like to

change or add?

I. If design is a series of conversations, what does this mean for the importance of

communication skills? Can a person be a great designer if he is also hard to talk to?

Can a great designer simultaneously be a horrible collaborator?

J. Is there any way to predict how many ideas you need to find a good one? Is there a

relationship between the complexity of the problem you're trying to solve? Are there

other factors? Or is it too hard to predict?

WHERE IDEAS COME FROM 111

^^^^m^^^^;

%#.???<.•'•

CHAPTER SIX

•g«

r'jfesMMi:;

What to do with ideas

once you have them

Ir

s hard as it is to find good ideas, it's more difficult to manage them. While the project is

humming along, vision document in place and a strong creative momentum moving for

ward, there is another level of thinking that has to occur: how will the designs and ideas

translate into decisions? Even if good design ideas are being investigated, and people are

excited about what they're working on, the challenge of convergence toward specifica

tions remains. If a shift of momentum toward definitive design decisions doesn't happen

at the right time and isn't managed in the right way, disaster waits. For many reasons,

project failure begins here.

If the team is still struggling to make big decisions on the day programmers need

specifications (or the decisions they contain), the tone has been set for the rest of the

project: things will be late, they will be half-assed, and people will not be able to do their

best work. More troubling is that even if things are completed on time, if the quality of

ideas reflected in the designs is poor, timeliness may not matter. Depending on the goals

of the project, the quality of the ideas may count as much as, or more than, being on

time.

For these reasons, the time between the completion of early planning and the writing of

specifications, in any milestone, is always tough. Teams naturally tense up when the first

major deadline (i.e., specifications) is visible on the horizon. Even if people aren't talking

about it, many recognize that not all the ideas still being discussed can survive. There

won't be enough time, money, or people to build all of the different things that are being

considered. People start thinking of ways to hedge on their commitments or cut corners.

Worse, some of the ideas and designs may be in conflict with each other. A car can have

only one engine, a house only one roof, and if three different alternatives for these things

are still proposed, it's clear that most of them won't come to be.

A

Ideas get out of control
One frustrating observation in these times is that there are plenty of good ideas bouncing

around, they just don't seem to land anywhere. Perhaps the worst experience of my

career—at this stage in a project—was during the making of Internet Explorer 4.0. (If

you're not interested in another war story, feel free to skip ahead to the next section.)

I remember sitting in my office staring at my whiteboard. Another PM and I had made a

diagram of the larger project team and all of the features we were working on. Each time

we thought it was complete, we'd remember a new requirement that had been added or

changed. When we finished, it took up the whole whiteboard. Suddenly, he was off to a

meeting, and I was alone in my office with the evil diagram.

11H CHAPTER SIX

I had tons of work to do, but I sat and stared at it anyway. I couldn't imagine how it

happened. The size ofeach problem wewere trying to solve was solarge and overlapped
so much with the other problems that I couldn't keep it in my head at the same time. I

loved my team and my work, but that didn't protect me from my growing sense of
despair. I couldn't see how we could finish what we had started. Although it was a
promising mess, withlots ofsmart things in it, it was a mess nonetheless. Afriend on the
team poked his head in my office, saw the expression on my face and the diagramI was
lookingat, and understood immediately. Hesaid, "Hey, feel the love!", which became our

sarcastic rallying cry for the rest of the project.

In the early months of the IE 4.0 project, we had a perfect storm of software
development. Weweresimultaneously trying to shift from small releases and teams (a la
2.0 and 3.0) to a major product release. We had the industry pressure of Microsoft's
competition with Netscape, which the press made out to be a winner-take-all battle. And
then there were the internal politicsof a transformative yet strategic product. It would
have been difficultfor anyone to keep the ship steady. And like most projects, it's when
the momentum shifts from planning to engineering that egosand opinions clash. People
face their first tough decisions and feel the pressures of their commitments. As

uncertainties and pressures become increasinglyobvious, one thing doesn't change:

deadlines. The next date sits impatiently on the horizon, getting closer every day.1

The solution, which is the focus of this chapter, is to carefully manage the field of possible

designs. Someonehas to plan and guideeach milestone from exploration to specification.
Unless there is an experienced design or engineering champion around to lead this effort
(which, as mentioned in the previous chapter, is the best way), the burden falls on the
nearest project manager. In picking up where Chapter 5 left off, we'll focus on turning
the corner on idea generation and head toward the writing of specifications (a topic

conveniently covered in the following chapter).

Managing ideas demands a steady
hand

The most common mistake is to treat the design process as if it were a big light switch—

you can just turn it on and offwhenever you like. This fantasy, as it goes, runs like this:
you show up one day, realize it's getting late and that there are too many ideas and
designs (and not enough decisions), and you say to the team, "OK, we're done with
ideas. Pick a design and let's start coding! Woohoo!" Even at the off chance that there is a

design that is ready for primetime (which there won't be), this kind of unpredictable
behavior will disorient and confuse the entire team. Up until that moment, everyone was

1 Afeelingcaptured best by the TheyMightBeGiants song,"Older": "This day will soon be at an
end, and now it's even sooner, and now it's even sooner. And now it's sooner still."

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 115

working ondesigns thatrequired time tobake. Without a date given to them, they may
have thought theyhadright up until 11:59 p.m. on the night before specs were due to
make their big decisions.

Instead, good idea management is decisive butpredictable. It should never bea surprise
that the nature of the work is changing (unless there isa crisis) or that the focus of
energy isshifting because the project isentering a different phase. There should be easy
and natural reminders to the teamas the scope and emphasis change. Like a dimmer
switch for lights—the kind witha knob that gives measured control over changes—there
should bea gradual shift offocus. It's the project manager's jobto manage that dimmer
switch and make sure it's controlled witha steady hand. There may be a moment when
someone has to say, "Look. Time is up. Is it A or B?", but that moment should be

expecteddays or weeks before it comes about. Thepace might need to accelerate or
decelerate, but it should be done gracefully.

To illustrate this, Figure 6-1 conveniently shows an idealized view ofthe creative phase
of a project, with a singularpoint in time when problems and goals have been defined
(vision document and/or requirements), and a single pointin timewhen specifications
will be completed. Between these twopoints aremuch brainstorming, sketching,
designing, prototyping, and allsorts ofotherfun activities described in Chapter 5.Forthe
first halfor soof the available time, everyone isfocused on coming up with ideas and
growingthe spaceof alternative designs. For the secondhalf, the emphasisshifts to
narrowing the field by refining and improving the bestdesigns. Eventually, a point is
reached where enough design decisions have been made to document them all in a
specification.

Problems tOri-fin$ %peafica.lion%
de-fined for a. smtfe design

FIGURE 6 -1. The problem spacehastonarrow at theturning point.

This is a good story, and a fine diagram, and I'm proud that they appear in this book.
However, as is the fate of many fine diagrams, the one pictured here represents
somethingthat never quite happens. Those straightlines and perfectanglesdon't exist.
Managing ideas, like much of projectmanagement, is always a fuzzy and subjective
process (see the eight paradoxes of project management in Chapter 1), and there are
several important reasons why this diagram is inaccurate.

116 CHAPTER SIX

First, the problem spacetends to shiftbackand forth. It's never a bright yellowline that's
fixed in place. Because understanding the problems to solve—and the ways to solve
them—is not static, the space of possible alternatives is always growing and shrinking.

Requirements will be adjusted. The trends might be for the space to grow more than
shrink, or shrink more than grow, but it's never all of one or the other. It's more of a

fuzzy curving line than a straight one.

Common reasons for this include:

• New information becomes available. The world doesn't stop because you have a

project underway. Companies might go out of business. A technologymay fail. Bud
gets may change. A usability study or customerinterview might reveal a new insight
into the problem ("people print documents more often than we thought" or "users
can't even do their basic tasks with the home page design we prototyped").

• An engineer's plan becomes clear, changing the rough estimates of how much
work might be possible. Early thinking always givesway to better, later thinking.
This sometimes works in the project's favor, and sometimes it works against the
project. For example, a programmer might find a new implementation strategy: "ifwe
build it this new way, I don't have to do five of these other work items, and there is
more time for other work, or we can finish early (yay)" or "because we can't build it

how I initially thought, we have to do five additional work items, meaning less time
for other work, or we can finish late (boo)."

• Conflicts are found between two solutions for two different problems that,

when integrated, work against each other. This can happen for usability, busi
ness, or engineering reasons. Joe might have a fantastic design for the car engine, and
Sally might have a great design for a transmission, but when brought together, they
realize that aspects of each of their designs conflict—for example, the transmission

doesn't fit with the engine.

Changes cause chain reactions

Another reason the problem space shifts is that design decisions are interrelated: one

change can impact many different decisions. Given this interdependence, it's impossible

to fully predict what the impacts will be. I've seen this happen many times.

On the IE 5.0 project, one of our goals was to improve people's ability to organize their

list of favorite web sites. We considered four different designs and made simple user

interface (UI) prototypes for each one. With these prototypes, we did rough engineering

estimates and got basic usability information to use in comparing them. With specs due

soon, we chose to focus on design B. But then, days later, we learned that because of a

schedule change on a different project, a component that design B depended on wouldn't

be available to us. So, we had to go back and reassess our choice.

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 117

When we did, we discovered that allof the other designs also required the same
component (d'oh!). Then, when we cut the functionality (i.e., eliminated the

requirement) that this troublesome component would have provided, we learned that

other programmers were depending on us to provide that functionality to them through
our code.This component was more important to the project than we'd initiallyrealized.
We had to sit down as a team and figure out if we could afford to design and build that
functionality ourselves, or if we couldlivewith the consequences of not having the
functionality at all.

It's important to note that this story doesn't represent a failure. Without making the

decision to go with design B, we never would have flushed out all of the dependencies

and design considerations involved. I do believethat smart teams flush out requirements
and dependencies early, but if the project is complex, you may never get them all. I don't
believe that the time spent modeling complex systems to catch every dependencyand
interrelationship is usually worth the costs (ifthe pace is fast, and the project is complex,
these models will be expensive to maintain), but it might be. It depends on the needs of

the project. We chose to bet on the teamwork of the design process to flush them out for
us, and it did.

Anyway, the back-and-forth process I went through, where paths opened and closed,

assumptions were proved wrong, and new questions were raised, is precisely what

designing things is all about. This is often called iteration, which means that the details

need to evolve over time (because the problem is complex enough that decisions won't

be right without several evolutions).

Specific to design, iteration implies a two-steps-forward, one-step-back experience. The

more difficult and complex the work, the tighter that ratio tends to be (e.g., 1.5 steps

forward for every 1 step back). But until you take that step forward and make a decision

("Let's run with design B!"), you won't see all of the problems and issues. Making

decisionsduring design, even if they turn out to be wrong, is the only way to force issues

and problems to the surface. If you plan correctly, you will be wrong many times during
the design process, but through doing so, you will dramatically improve your chances of

success. Most engineering, design, and scientific efforts have similar patterns, as the

following quote expresses:

"There are still enormous amounts of trialand error.... You goback and forth
from observation to theory.You don't know what to look forwithout a theory,
and you can't check the theory without looking at the fact.... I believe that the

movement back and forth occurs thousands, even millions of times in the course

of a single investigation."

—Joshua Lederberg, winnerof the Nobel Prize,1958

118 CHAPTER SIX

Creative work has momentum

The second problem with Figure 6-1 is that the creative momentum of a project is always

stronger than inexperienced leaders and managers expect. The effort required to narrow

down a pool of ideas into a single (good) designbecomesmuch harder, and demands
different skills, than they anticipated. Figure 6-1 implies correctly that the time to close

down a problem space should be as long as the time it took to grow it out. But the more

innovative or creative the project is, the harder it is to estimate the time the problem

space will need. This is because of the creative work's momentum.

The cause of this momentum is that the rate of new questions and issues being

discovered is faster than the rate that old issues are being closed. Anyone involved in the

work can sense this trend. Even when the target date for specifications is weeks away,

many willbelieve that the schedule is going to slip (and worse, that there is nothing they
can do about it because the managers don't see it happening). This is often the first major

slipping point on projects. It happensgradually and is continually underestimated until
it's too large to correct easily. (I'll cover general correctiveactions for schedules in

Chapters 14 and 15.)

So, in the diagram shown in Figure 6-2 (noticeably uglier than that shown in Figure 6-1,

but, alas, more realistic), the team is working hard, but it's stillvery clear that the date for
writingspecifications is improbable. Therate of closure is goodand is trending in the
right direction, but its trajectorydoesn't match the specification deadline.

Problem spa.ce
(.exploring a.l4ema.4i^es)

QoAcl for completed
specifications

TM &******"**
FIGURE 6-2. The problem spacegrows andshrinks during design, relative to theunexpected momentum
ofcreative work.

This is often the first time that a project manager has reason to panic. Until this point,

everything was abstract: words, goals, lists, and slide decks. But when the designs aren't
togetheryet, and the date for specifications looms, people get scared. Some lookfor ways
to avoid the real situation by blaming others, forcingbad decisions, or denying that the
problem exists. Chapter 7 will explain one technique fordealing with late specifications;
Chapter 11 will discuss what to do when things gowrong. But in this chapter, I'll focus
on a better way to manage ideas and avoid these problems in the first place.

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 119

Checkpoints for design phases
Thebestwayto manage ideas is to startany major design workwith clearcheckpoints for
how the time shouldbe used. Instead ofhaving onlytwo checkpoints, requirements (or
problem definition), and spec writing, some intermediary points need to be defined
before creativework is goingat full speed. It's the projectmanager's job to make sure
thesepointsin time are created (andthat everyone understands their usefulness),
althoughit mightbe best if the designers or engineers define the specifics for when those
pointsin time occurand what the criteria should be for reaching them.2 Thereare many
different ways to do this, and the bestwaywill varyfromprojectto projectand team to
team. But, as a basic rule of thumb, Figure 6-3 illustrates the key points in time.

Problems
defined

FIGURE 6-3. Checkpointsfor design.

Vision and proof-of-concept. Ifthevision document isdelivered with a proof-of-
concept prototype, the design and creative effort hasa headstart.There will already be
design ideas andengineering concepts to investigate andbuild off of (or reject, but
with improvedunderstandingof the problem). It's not a goodvisionif it doesn't have
at least a rough proof-of-concept design prototype.

Idea groupings/lists. After the initial wave ofnewideas andpossible approaches are
raised, someone has to organize and consolidate them.There shouldbe a point in time
when this happens so that the team can expectit and plan for it.

Threealternatives. After thehalfway mark, thegoal isto narrow thepossible design
directions into three to five alternatives. The more complex the project, the more
alternatives there should be. How much each alternative differs from the others
depends on the aggressive/conservative posture of the project, the confidence of the
designers, and the problems the project is trying to solve.

Two alternatives. Investigate, research, prototype, and question until it's possible to
confidently eliminate down to two alternatives. There should be two clear directions
that define the largest remaining decision point(s).

2 Thecheckpoints themselves are not as importantas the effect they have. It's often better to let
the team propose checkpoints because it improves the odds they'll respect them.

120 CHAPTER SIX

• One design. Investigate, research, prototype, and question until it's possible to make
a final direction choice.

• Specification. Document the single chosen design. Use the remaining time to investi
gate, understand, and decide on lower-level design issues.

These checkpoints should be defined by the team around the same time the vision

document is completed. If schedules are short, reduce the number of checkpoints or skip

some intermediary points. And if there aren't enough resources to invest in checkpoints

for all the work, prioritize around the most important design challenges.

It's important to realize that these checkpoints are not used exclusively to control the

process. They also serve to guide the team, break the work into manageable chunks, and
give the project manager a way to understand the state of the project. When changes

happen, the checkpoints give everyone a frame of reference for discussing what's

happening and why. For example, after reaching three alternatives, new information or

ideas might develop that temporarily expands the field of alternative designs to four or

five. This might mean the design is still alive, and new thinking is being used to improve

the design. But it could also mean that unnecessary directions are being explored. The

checkpoints force the team to figure out which one it is, and acknowledge when the

design space is growing larger than it should be. The checkpoints create natural

opportunities for project managers and their teams to discuss how aggressive or

conservative they need to be in their next decisions to keep the project on track.

NOTE

These checkpoints can be used at the project level or for any individual design
problem from a feature to an algorithm. It's a tactic for shepherding work: it applies
at any scale of the project.

From my experience, it's the earliest checkpoints that are hardest to get right and the

easiest for engineers to ignore. If the first steps can be managed well, a foundation is

formed for the rest of the creative process. People will see the value and buy into the

process. So, take care to manage those first few checkpoints. With particularly resistant

teams, simplifying the process into just three checkpoints—problems defined, the three

alternatives, and writing specifications—might be a workable compromise the first time

around (see Chapter 10 for more on team process creation and adoption).

How to consolidate ideas

In any creative process, once you have enough ideas, someone has to look at the

possibilitiesand divide them into useful piles. This makes it possible to understand the

different viable design directions and to begin to see their differences. (As a rule, 4 or 5

piles of things are easier to work with than 30, 50, or 150 individual things. This is true

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 121

for ideas, specifications, hyperactive children, small animals, pieces ofcandy, annoying
writers that make silly lists for no reason, etc.) It's fine if some ideasare represented in
prototypes and others in scribbles, notes, or unexplored thoughts. The goal isn't to
eliminate or refine individual ideas, it's to put some shape and structure around them all.

There are manytechniques* for doing this, but the simplest one I knowis an affinity
diagram (akaKJdiagrams, afterthe anthropologist Kawakita Jiro). This approach
requires four things: ideas, a wall, Post-it notes, and the team (although goodbeer and
tasty food help). In an affinity diagram, each idea is represented as a note, described in

just a few words and placed on the wall. These ideas canbe the output ofbrainstorming
sessions or a list refined by one or more people on the team. There can be anywhere from
20 to 100 or more ideas. The scope of the problem you're trying to solve, and how

creative people have been, can makefor wild swings in the size of ideas from projectto
project.

With an affinity diagram, you'll see a broader view ofthe ideas. It should look something
likeFigure 6-4. Some ideas are similar, and you want to position them together so that
they are easier to identify. Working visually allows people to focus on relationships and
not on how much information they can keepin their head. Affinity diagrams alsohave
the benefit ofmaking discussions withothers about ideas natural. Asmall group of
people canstandtogether at the wall andmake comments aboutthe relationships they
see, changing the positions ofthe Post-it notes as theycome to new conclusions. Affinity
diagrams usePost-it notes because theycanbe moved aroundon a wall and organized
easily into different arrangements.

FIGURE 6 - H. Lots of ideas (yay), but theyarehardto manage(boo).

The goalof the affinity diagram is to reach something likewhat is shown in Figure6-5.
The same raw list of ideas is now groupedinto five buckets that represent most of the
available ideas. Theway to do this is easy. Someone goes to the walland startsmoving
ideas around. The lead designer, the project manager, or a small team should be the first
to take a stab at organizing the ideas. After someone has taken a first cut, it becomes

easier for others to move ideas around between groups, change the names of the

groupings, or recognize that some ideas are duplicates of each other and can be removed.

3 See http://www.ms.lt/ms/projects/toolkinds/organize.html for a good list of alternatives.

122 CHAPTER SIX

As people on the team stop by and make changes, the diagram will change in shape in

many interesting ways. (One tip: consider taking digital photos periodically if you want to

preserve the different groupings people come up with.) Eventually, the affinity diagram

settles down and groupings emerge that can be used in the next steps.

FIGURE 6-5. Grouping ideas is a good idea.

In case I'm being too abstract in describing how affinity diagrams work, here's an

example that explains Figure 6-5 in another way. Let's say that one of the project goals

was to make search results on the intranet web site easier to use. We met, brainstormed,

had some beers, and came up with a long list of ideas. The next morning, people had a

few more to add, so we included them. We reviewed that list, eliminated duplicates,

laughed as we crossed off ideas no one could explain, and had this basic list of ideas to

work with:

• Remove advanced options that no one ever uses.

• Improve the layout of the search results page.

• Use the superior HyperX search engine.

• Reduce the number of results shown.

• Allow users to set preferences for how the page should look.

• Open the results in a new window.

• Fix the performance bugs in our search engine.

• Make the query engine work properly (support Boolean searches).

After reviewing the list and using Post-it notes or some other method to group the ideas,

we spent a half-hour organizing them. We moved them around, tried different

arrangements, and finally arrived at a list we thought was most useful:

• Simplify

—Remove advanced options that no one uses

—Improve the layout of the search results page

—Reduce the number of figures shown

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 123

• Customize

—Allow users to set preferences for how the page should look

—Open the results in a new window

• Remodel architecture

—Make the query engine work properly (support Boolean searches)

—Fix the performance bugs in our search engine

—Use the superior HyperX search engine

The groupings here are very simple, and because there are only a total of eight ideas, it
works fine. However, if there were 40 or 50 ideas, a list wouldn't work as well. Lists

promote linear and hierarchical thinking, and they become hard to manage when they

get too large. Later on in development, lists are a great way to push the process forward,

but while stillin the early stages, affinity diagrams are more powerful.They help people
see ideas as fluid and tangible things that can be moved around and easily reorganized.
Thisfluidity helps people to question their assumptions, see new perspectives, and follow
other people's thoughts. For teams new to creative thinking (especially as a group), an
affinity diagram is a great way to go.Use lists for your own purposesas a projectmanager
afterward, but give the team an affinity. I'm convinced that it helps find more good ideas
and brings people into the process.

Refine and prioritize

Don't worry about finding "the best" grouping—pretty good is good enough. There are

many ways to group even a small number of ideas, and many of them will be good. Aim

for four or five groups that cover different ground or imply different directions. Some

ideas might not quite fit into any one group, but work them in as best you can anyway.

Remember that you can come back to your ideas and regroup later on if you need to.

When you find something that feels good, move on. You don't ship affinity diagrams or
lists of ideas to the customer, so don't overthink it.

One last exercise to consider is to take an informal pass at prioritizing the ideas (I'll cover

formal prioritization in Chapter 12). Which ideas are the most promising? Refer back to

the project vision and problems to be solved to make sure everyone understands the real

criteria, because it's easy to fall in love with ideas for reasons that have nothing to do

with the goals of the project. One person should drive this process, whether it's the

project manager or lead designer. The more informal you keep this discussion, the less

time it will take. It's not necessary to draw up a complex criteria checklist and evaluation

procedure. All you need is a rough idea of which concepts seem stronger before you
move on to prototyping. Should schedule time become shorter, this rough guide will

make it easier to sort out where to use your remaining time.

12H CHAPTER SIX

Prototypes are your friends
In Chapter 5,1 explained why design is an exploration. You have to explore the problem

space to understand what the alternatives are. Good design depends on knowledge of

alternatives because the more information you have about problems and solutions, the

easier it is to make good decisions. Prototypes are the natural next step in the design

process. They take everything that's been learned and apply it to the problem without

taking on the risks of full implementation. Prototypes fulfill the carpenter's maxim,

"Measure twice, cut once," by improving the design thinking before the team commits to

a plan. And as I'll explain next, prototypes do not need to be elaborate, expensive, or

require much time. If you're skeptical about the value of prototyping, jump to the section

"Prototypes support programmers."

Where do prototypes start?

With four or five groupings in hand, you've paved the way for good prototyping. While
people with stronger creative skills might have seen the directions for alternatives days
before, groupings of ideas make it easier for the team to see how many alternatives there

are. With 20 or 30 ideas, there are hundreds of different ways they could be combined,

not counting how many different ways there are to interpret each individual idea.

An experienced designer will have good instinctsfor how to begin. She'll be comfortable
sorting through the available ideas and deciding what to prototype first (not to mention

how to go about doing it). But should you be designingwithout one, there are several

simple ways to choose what to prototype:

• Pick the most promising idea from each group and try to combine them in one design.

• Do small prototypes for each group to see where they go. Could all the needed prob
lems be solved just by remodeling the architecture or by adding customization? See

how far each direction takes the design.

• Designer's judgment:allowthe designer to use her experience and intuition to decide
what to use in a first stab.

• Make a list of the hardest or most important design questions, and make a proto

type (s) that will help answer them.

Asa general rule, the more sophisticated the prototype is, the more sophisticated the
questionsit can answer. A sketch on the backof a napkin is fine for very early and very
rough kinds of questions, but if you want to know something specific and be confidentin
the answer, you'll need something more involved.

With the first prototypes underway, it should become clear which additional ideas might
be added without causing problems, and which ones no longer fit. Like a jigsaw puzzle,
some things will slidetogether and make more sense than others, but it requires trial and

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 125

error to find out. Because there are so many perspectives (customer, business, technology),
it's impossible to predict which paths willwork and which ones won't. And that's precisely
what prototypes are for: making mistakes, learning, revising, and moving forward.

Prototyping for projects with user interfaces

Prototypes should be done from the top down. Start with what the users will see and the

sequence in which they will see it. Involveyour usability and design experts as early as
possible to get to some reasonable designs and assumptions. There's not much sense in

spending days planning databases and XML schemas until a few screens have been made:

that's like buildingthe frame of a house beforeyou've seen the floorplan. If you do,
you're guaranteed to throw away production-quality work, something the prototyping
effort is meant to avoid.4

Instead, wait until there are sketches or mock-ups ofthe user interface that are promising
(best determined through usability studies or by walking through decisions users will

have to make on each screen to do their work). Engineers should then explore how it
might actually get built. If similardiscussions started earlier on in the project, this should
be a natural and easy continuation of them.

As far as how to buildprototypes, there's no magic secret. It takes someexperience to
learn which things can be faked or glossed overand which ones require more thought
and investment.5 The general rule of thumb is to do as little work as necessaryto get the
information you need. Any tool—Flash, HTML, VB, or even paper—can be used to

prototype designs. It's much more about the skill of the designer and/or prototyper than
the technique or tool.

Prototyping for projects without user interfaces

Evenon projects with no user interfaces or web frontends, it's still sensible to prototype.*
Insteadof user interface design issues, pickthe most difficult or complex technical
challenges and prototype them. Confirm that the core algorithms are sound, satisfy basic
test cases, or meet a subset of the performancecriteria. The goal of prototyping is the
same no matter what kind of project it is:work to understand whether the rough
approach(es) you're considering can be built in the time allotted and actuallysolvethe
problems posed. It's a chanceto dealwith riskbefore implementation begins and to learn
about what needs to be done before committing to it.

4 For arguments on the issuesof programmingbefore designing, see Alan Cooper's The Inmates
Are Running the Asylum (Sams, 2004).

5 See 'The Artof UIPrototyping" at http://www.scottberkun.com/essays/12-the-art-of-ui-prototyping/.
6 While yourteammight not be responsible forthe users, somewhere along the wayyouralgo

rithm or database does meet with living people, and decisions you makewillimpacttheir
experiences.

126 CHAPTER SIX

Prototypes support programmers

In the situation where there is a designer or project manager who can lead the

prototyping effort, programmersand engineersoften complain that they have nothing to
do.7 They might also say that the process is a waste of time (a claim often made of
anything that doesn't involve writing code). On the contrary, I think programmers

benefit more from prototyping than anyone else on the team. Prototyping, when done

properly, dramatically improvesthe probability that the designs they are asked to build
have been well considered and are of high quality. Perhaps what is more important to the

projectmanager, while prototyping is takingplace, is for the programmers to have lead
time to investigate the engineering approaches they'll need to use. The quality of their

production code should rise if they invest their design time wisely. Worst case, I'm sure

customers would appreciate additional bugs being fixed in the software.

Here's a short list of questions programmers should be responsible for answering at this

time:

• At a high level, how will we build what is shown in the design prototype(s)? Is there

existing code or technology that can/should be used?

• Are there reasonable design changes the designer should be aware of that will reduce

engineering costs?

• What are the five or six main components needed, and how will they relate to each

other? At the highest level, how expensive will these components be to build? (High/
medium/low/unknown is sufficient. For the answer unknown, it's the programmer's

job to start investigating.)

• Where are the greatest technical risks? Which components are hardest or most com

plex to build?

• Which interfaces, between which components, are the most complex or most likely to

fail? (A dedicated tester or QA person, if available, might answer this best.)

Just like there is no way for a designer to confidently answer complex design questions

without a design prototype, there is no way for an engineer to confidently answer

complex engineering questions without an engineering prototype (despite what he might

say). If ever multiple prototyping efforts are necessary, they should be done in sync with

each other. It's best for the lead designer and the lead engineer to spend time talking to

each other, asking questions, and helping each other to make good decisions. The two

prototyping efforts should be on a path that could eventually join up conceptually: the

engineering and design ideas should match.

7 I've argued with other managers on this point. They couldn't imagine their amazing engineers
not coding at full speed all the time. There ishypocrisy here: if the programmer's time is so valu
able, the use of it should be planned. "What will the programmers do?", they'd ask me. And I'd
say, "They'll wait for a plan worthy of their time or help us find it."

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 127

Alternatives increase the probabilityof success
Specific to user interfaces and web designs, most prototypes I've contributed to, or made
myself, had lots ofbrothers and sisters. With the big pool ofideas that surfaced early on
in the creative process, there were many alternatives that seemed just as reasonable as
the others. The only way to understandwhichoneswere better was to try out someof
them.Designers or engineers whoare experienced at making prototypes have the ability
to change the user interface, layout, or other details to one of any number of

configurations (CSS and HTML are great examples of this, where there are layersthat can
be changed independently of each other). A flexible prototype can make discussionsand
decisions happen much faster because people don't need to imagine and visualize as
much in their minds.

I've learned from experience that no matter how much it seems like people agree, if

they're not all looking at the same image, they may not be agreeing at all. Each person

might have something very different in her mind's eye, and when she says yes to the
others, she's actually agreeing to very different things. Later on, odds are good it's the

designeror the projectmanager who willbe blamedfor this kind of confusion. Prototypes
are a reliable way to prevent it because they are actual things that can be shown and

referred to later. "See this? Youagreed to this, and everyone in the room saw you agree
to this exact design." You should specifically callout aspectsof prototypes or design
screenshots that you're using in this way.

Questions for iterations
With the first cut at a prototype, tons of new ideas and questions will come up. This will

include suggestions for changes, enhancements, and new ideas to try. If it's an early
prototype, its next iteration might focus on exploring big ideas or wide changes. If it's a

late prototype, iterations should be used to narrow the designspace and help make
decisions. As each iteration comes together, there's an opportunity for a new discussion

about the progress of the design. The best framework for these discussions is a set of

questions that help evaluate the design and that focus the discussion in a productive way.

Here are some questions for early prototype iterations:

• What requirements does this satisfy? Can we verify this? (Usability, use-cases, etc.)

• What's good and bad about this design relative to the problem it's supposed to solve?
(Pros and cons for each of usability, business, and technology considerations.)

• What data do we need to evaluate this design? (Perhaps a usability study, an informal
review by a programmer for engineering sanity, marketing, an expert's opinion, etc.)

• What did we learn from this design that we should keep in the next attempt?
Eliminate?

128 CHAPTER SIX

• What might we try in the next iteration to make this better?

• Are there other ideas from the idea groupings or from other prototypes that we should

include?

Here are some questions for late prototype iterations:

• What decision does this help us make?

• Which open issue will this help us close?

• Has this design confirmed the existence of a problem we need to investigate? Has it

resolved a problem we needed to solve?

• What might we try in the next iteration to get us closer to writing specifications?

And with that, the designer has enough information to make another version of the

prototype, perhaps integrating two different alternatives together or forking the design

into two new alternatives. There shouldn't be any restrictions on what's allowed or not

allowed, as long as whatever is done eventually brings the design work one step closer to

completion.

The open-issues list
As the field of alternatives narrows, there is one new responsibility for the project

manager: the open-issues list. An open issue is anything that needs to be decided or

figured out but hasn't happened yet. It's essentially a list of questions that should

encompass anything that needs to be done, prioritized by its potential impact on

engineering. The form of this list isn't as important as the quality of issues listed and the

diligence of the person driving to resolve them. I've used a designated spot on a

whiteboard or Excel spreadsheets for this, and I can't say that the tool I chose made much

of a difference either way. I don't think these lists need to be controlled or managed like

source code (that is, unless the politics of your organization make it worthwhile): the

simpler the tool, the better.

This list can start with a rough list of unanswered questions ("Will we use data schema A

or B?" or "When do we need final UI design from Sally?"), but it should grow in detail as

specifications are written. Each item should have a name next to it of the person who is

driving the issue to resolution. It should be the PM's job to make sure everyone is aware

of issues they've been assigned, nag them appropriately, and track them to resolution.

Programmers should have the full burden of engineering questions and research, but if

there are any issues that the PM can take on, he should. Typically, items that might block

engineering but are not engineering specific—such as marketing approval, usability

considerations, branding, and visual design—should be tracked by the project manager,

as they will impact the specification more so than the implementation (we'll cover the

difference between the two in Chapter 7).

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 129

The wise project manager divides the open-issues list into two priorities: things that need

to be resolved before specifications, and things that could wait until later. It's the most

natural way to prioritize issues that have the potential to block engineering—and possibly

the entire project. Anything on the post-specification list should be clarified with

engineers because they're the only ones who can verify that the decision or information

can wait. (How and why things should wait until after specifications will be covered in

the next chapter.)

Every uncertainty that needs to be addressed should be listed. No one but the project

manager may need to see this list, certainly not early on. But as days go by, it can serve as

a tool to unify the team in meetings or hallway discussions. The goal isn't to make people

feel bad, it's to remind them of what remains and to help them see what problems other

team members need to resolve. Because the project manager's work affects everyone,

making the list visible allows people to collaborate on resolving the issues: "Oh, that's on

my list, too. Should you take it, or should I?" This is one reason I've kept my issues list up

on a whiteboard in my office or in the hallway. (A wiki might work fine, but no one ever

looks at that list but the person who created it. Non-virtual and informal places work

much better.)

I found that whenever people came by my office and asked how things were going, I'd

point to that list and say, "That's exactly how things are going. When that list is empty, I'll

be able to finish those specifications." While this isn't a performance metric or something

rigorously measurable over time, the state of a project manager's issues list, and the scope

of the questions it includes, reveal a great deal about how well things are going. If the list

is long but contains very specific issues, things are in good shape. If the list is short but

asks scary fundamentals like, "What problem are we trying to solve?" or "What

programming language are we using?", you know the project has a long way to go.

Summary
• Ideas have their own momentum. It will take longer to reign in creative work than

you expect. Changes will cascade through a project.

• Create checkpoints for creative work to track and manage it. Common checkpoints
include proof-of-concept, idea groupings, three alternatives, two alternatives, and one

design.

• Use affinity diagrams to consolidate ideas.

• Prototypes enable the project to confront issues early and learn from mistakes with

out significant risk.

• Use iterations, or the periodic refinement of a prototype, to ask questions, evaluate
progress, and decide on the next steps.

• Create an open-issues list to track questions that need to be resolved before specifica

tions can be completed.

130 CHAPTER SIX

Exercises

A. How do you organize your to-do list, for either personal tasks or work tasks? Can you
apply a similar system to how you organize, track, and manage your ideas? Why or

why not?

B. Should ideas be managed openly or in private? Who on your project team should

have access to: a) see; b) modify; or, c) add/delete ideas?

C. Imagine you are toward the end of a project and realize a big idea that could radically
improve what you're building. What are some ways to keep that idea around so that
when planning starts for the next batch of work, your idea can be used? Can you
think of a way to capture ideas like this for the entire team?

D. Spend 24 hours where whenever you hear someone suggest an idea, or have an idea
yourself, you write it down. How many ideas did you collect? More or less than you

expected?

E. Take the list from exercise D. How many different ways to categorize them can you

think of? (If you were too lazy to do the previous exercise, use any list: a shopping list,

a list of people you want to see naked, anything).

F. What are the warning signs of working on a project with too many ideas? Is there a
healthy ratio of ideas to time, to people, or to a project?

G. Managing creative work requires skills that might not be used in other parts of project
management. What are the benefits and risks of having an engineer or designer lead

the creative stages in a project?

H. Pretend you are working on a project midway through planning. No one has made a
prototype; there are only written documents. You recognize there are some questions
that can't be answered with documents alone. What do you do? Do you create a

prototype on your own? Involve another person on the team? Who do you show the
prototype to? What do you expect his reaction to be?

I. Let's assume in the previous exercise, you decided to make a prototype. You show it to
the team and they love it. In fact they love it so much that they agree to abandon all
other design work and implement, to the pixel, the prototype you made. You know
the prototype makes many assumptions that need to be examined, but they don't
care. How can you convince them other prototypes are necessary? What could you do
before you show the prototype to minimize the chances this scenario happens?

J. What does it mean if a PM claims to have zero open issues? Who would you trust

more, a PM with 5 items in her open-issues list or 50? Are there any dangers of

spending too much time tracking open issues?

WHAT TO DO WITH IDEAS ONCE YOU HAVE THEM 131

•£mM

•-5SS

:r,^:%,-;/^^>± ;**&«#!

k:'i\:-;5'

.:
•:.:

':.
•;•>•'

••
-••

;,
:\

^
W

^
:^

H
^

^
^

(S
^

M
m

il
lr

fi
^

&
S

g
i1

CHAPTER SEVEN

Writing good specifications

I once had an argument with a programmer who believed that we didn't need to write

specs. I walked into his office with this big template I'd been told to use by our boss, and

he just laughed at it (and unfortunately, at me as well). His opinion was that if what I

wanted to do was so complicated that I needed 50 pages to explain it to the program

mers, it wasn't worth building anyway. He saw the need for all of this process and paper

work as a signal that communication and coordination on the team were failing, and that

we weren't trusted to decide things for ourselves. We shouldn't need so much overhead

and bureaucracy, he said, implying that elaborate planning was never necessary.

Having had this argument before, I smiled. I asked him if he'd make the same claim

about the engineering plans for the hi-rise apartment building he lived in or the three-

story highway overpass he drove on to get to work. But apparently he had heard this

question before, and he smiled right back. He said that while he was glad those things

were planned in great detail, he didn't think working with software was quite the same

as working with the laws of physics and construction materials (and he argued in favor of

methods with minimal spec writing, such as extreme programming). We quickly agreed

on two points. First, that compared to traditional engineering, software is more flexible,

easier to change, and rarely has people's lives at stake. But, we acknowledged that

because we faced complex engineering challenges, had a team of people depending on

our decisions, and had budgets and deadlines to meet, we needed more than our

memories of hallway conversations to make sure the right things happened.

We also agreed that what we needed for our project was something suited to the kind of

work we were doing and the kind of people we were. Some sort of written

documentation would be useful if it solved real problems for our team, accelerated the

process of getting things done, and improved the probability of a quality outcome (and it

needed to be updatable over time without upsetting anyone). If we could make

something that achieved those things, he said he would gladly use it, regardless of what

we called it or what form it came in. And with that, we revised the spec process down

into something we agreed would work for our small team. I went back to my boss,

rehashed our conversation, and worked out a compromise. The big, tax law-size spec

template went away.

The key lesson from this story is that like anything else people make, there is no one right

way to write specifications or to document work. Specifications, like most things teams

are asked to do, should match the needs of the current project and the people who will

have to create and read them. And in the same way that web sites or software products

need to go through a design process to find the best approaches, specifications need some

thought and iteration to be done correctly.

136 CHAPTER SEVEN

But many experienced people I know have fallen into the trap of believing there is only

one way to do specifications (or whatever they call them), which tends to be whatever

way they did it last time. Sometimes this chain of repetition goes all the way back to the

first projects they worked on. They assume that because those projects weren't complete

disasters, the way they wrote (or didn't write) specs contributed positively toward that

outcome—a claim that without any investigation may or may not be true (i.e., the project

might have succeeded in spite of a dysfunctional spec process). Worse, if good questions

about how and why specs are written have never been asked, no one on the team really

understands how good or bad the spec writing process really is, or how much it does or

does not contribute to the team's performance. (This is entirely similar to how the

absence of good questions about writing quality code prevents the possibility of

understanding how good or bad the code really is.)

My aim in this chapter is to explain the following ideas. First, that specifications should

do three things for a project: ensure that the right thing gets built, provide a schedule

milestone that concludes a planning phase of a project, and enable deep review and

feedback from different individuals on the course the project will take. These three things

are very important, and it's unlikely that a process other than written specifications

provides them all at the same time. For that reason alone, I'm a fan of specs. Second,

most of the complaints people have about specs are easily remedied, provided their

authors understand the common pitfalls of spec writing and recognize the specific

benefits specs should be used to provide.

What specifications can and cannot do
Specifications, like vision documents, are a form of communication. When used

effectively, they convey important information in a simple and easy-to-consume way.

When used poorly, they are hard to read, tedious to create, and frustrating for everyone

who comes in contact with them. Often, teams that write lousy specs seem to need more

of them (as in, "If wolves come in packs, specs come in plagues"). Most of the time, weak

or failed specifications come from a misunderstanding about what specifications are

capable of and what they can't possibly achieve.

Here's a list of the important things specs can do for a project:

• Describe effectively the functionality of what will be built

• Help designers clarify decisions by forcing them to be specific

• Allow the review, questioning, and discussion of detailed plans before full implemen

tation begins

• Communicate information from one to many

WRITING GOOD SPECIFICATIONS 137

• Create a team-wide point of reference for plans (and if drafted during design, use it as
a living documentation of design progress)1

• Provide a natural schedule milestone to focus the team

• Create insurance against the author(s) getting hit by a bus2

• Accelerate, improve, and increase the frequency of healthy discussions

• Give leaders an opportunity to give feedback and set the quality bar

• Add sanity and confidence to the team (and author)

Things specs cannot or should not do:

• Eliminate all discussions between team members

• Prove to the team how smart the author is

• Prove how important a feature is (or why it shouldn't be cut)

• Convert people to a philosophical point of view

• Be a playground for the author's Visio or UML skills

The team's leaders should put together a list like this for the team. Everyone who will

have to read or write specs should be asked to review the list and give feedback on it

before specsare written. Maybe there's something listed that the team doesn't need specs

for, or something isn't listed that should be added. This can be a quick discussion—a half-

hour max. Even a short chat about it sets expectations for what the specs will contribute,

and gives the team a chance to provide suggestions for better ways to go about doing it. If

there is a team-wide template for specs, it should be written with these criteria in mind.

Deciding what to specify
Every methodology for software development or project management defines

specifications differently, which is fine. There are four basic kinds of information that end

up in specifications, and the easiest way to discuss them is to assume they end up in four

different documents. But how these things get dividedup isn't important (although some
people get religious about it). What matters is that the right information is specified by the

right people, and it's produced in a useful way for the people who read it. So, on smaller

teams, these different kinds of specifications are often combined. On larger teams, they

may need to be separate (but linked together) and even authored by different people.

1 Some teams put specs into source control, with check-in/check-out locks enabling multiple peo
ple to edit without stomping on each other (the Google Docs web application mimics this behav
ior). In similar news, it's frustrating to wander through a document trying to figure out what's
changed. With any tool authors should log changes; e.g., "7/20/2008—added detail to section 6".

2 As sardonic as this might seem, it's true. In fact, the field of knowledge management is based on
capturing information that otherwise would disappear ifan individual were to, shall we say, not
make it to the next release.

138 CHAPTER SEVEN

Requirements. To document the many things expected of a project, a requirements

specification outlines all of the requests and obligations that the work must live up to.

It consolidates all other requirements work and provides a point of reference for the

project. At best, this is a list of victory conditions, describing the end result, without

explaining how it will be achieved. In all cases, requirements should be defined before

the design process begins (although they can be improved and updated later), and

they should be derived from the vision document. They should be included with

feature specifications for clarity and to aid in review (will this plan satisfy the
requirements?).

Feature. A feature specification describes the behavior for a scenario from the cus

tomer perspective. A feature specification is the primary output of the design process.
It describes the software functionality through the user interface (if there is one), and

it details how things should work from the most nontechnical perspective. It should

describe how the customer's experience will have changed when the work is com

plete, and it should contain a simple listing of the engineer-defined work items needed

to fulfill it. This is different from a requirements list in that it defines a specific design
that satisfies the requirements, including the user interface or other nontrivial design
elements. If done well, a good feature specification can be as simple as a series of well-
explained screenshots.

Technical specs. A technical specification details the engineering approach needed to

fulfill the feature specification. It only needs to be detailed enough to describe the

most complex or reused components that other programmers might reuse, and to pro

vide supporting evidence for the work items needed for a feature specification. Some

times, the depth or technical nature of a feature specification eliminates the need for a
separate technical spec.

Work-item lists. These are roughly equivalent to work breakdown structure, WBS. A

work-item list is the description of each programming assignment needed to fulfill the

feature specification. It should be broken down to a level of detail that separates items

of different levels of importance, with estimates that are measured in days (some

boundary on work-item size should be defined, perhaps a day or half-day, but it's up
to the programmers to define it). The creation of the work-item list is entirely the

domain of the programmer, and it's up to the lead programmer, and possibly the
project manager, to review and sanitize these lists. (Technically, work-item lists are

not specifications: they are the plan for how engineering will fulfill specifications.

However, they are so important and related to specs that I couldn't find a better place
to introduce them.)

Test criteria and milestone exit criteria. As the feature specification comes

together, test criteria should be created. This must include prioritized test cases for the

new functionality, along with goals for how well the code needs to perform on those

cases to meet the quality goals for the milestone (aka exit criteria; see Chapter 15).

WRITING GOOD SPECIFICATIONS 139

Let me provide an example of how these different kinds of specification information can

be combined. Whenever I worked on a large team, it was common to write both feature

and technical specifications. We'd derive requirements lists from the vision, review them

with the team and customer, and then place them at the beginning of the feature

specification. Work-item lists were generated by the programmer (often in a simple team-

wide spreadsheet), and copied or linked into the feature spec. We'd end up with one

primary specification that included many of the kinds of specification information just

described.

The easiest way to think about these four types of specifications is in rough chronological

order: requirements, feature, technical, and work items. Like many tasks, each kind of

information provides the groundwork for the next. The larger the team and more

complex the project, the more formalized the division between these kinds of

specifications probably needs to be.

Who is responsible for specifications?

On a large team, PMs or designers should be responsible for the feature spec-

programmers would be responsible for the technical spec. They should be writing these

things so that someone reading both documents will believe that the authors actually

know each other and chatted frequently. Often, technical specs are much shorter (and

less generous to the reader) because their audience is smaller, and programmers tend not

to be interested in writing things that don't compile. Even so, the technical spec

supporting the designs in the feature spec should match up.

Business analysts, clients, or project managers often write requirements documents. It

depends on who has requirements authority and what the nature of the project team is

(small contract team, big staff team). Work-item lists are the responsibility of whoever is

managing the programming team. In large organizations, this is typically the lead

programmer.

On small teams, as usual, it's a less-structured affair. There may not be strict policies for

who does what, or even what documents need to be written. The project manager or lead

programmer may end up writing a single document that's an uneven stew of these four

kinds of information, jumping between them to suit the immediate needs of his team.

This can be fine, provided people get what they need when they need it.

Specifying is not designing
The two previous chapters defined a design process for how to work with ideas and

develop them into plans. The importance of a defined design process is to separate the act

of designing and planning work from the act of writing a specification for it. The creation

of a specification should, as much as possible, be focused on expressing an existing plan

110 CHAPTER SEVEN

or set of decisions in the best possible way, rather than simultaneously designing that

plan. The less separation there is between these two things, the harder it is to achieve

either of them. Performing one of these processes on its own is difficult enough, and the

more one tries to do both at the same time, the lower the odds are of doing either task

properly.

Spec authors must be aware of the different mindsets of designing and specifying. When

they sit down to write the specification, they must, for the moment, stop exploring and

creating and focus on expressing and explaining. Or, at least they must plan to come back

and heavily revise the document to reflect the voice of an explainer rather than a creator.

Whenever writing specifications (or anything else), it's important to remember that the

way that we figured something out is not always the best way to explain it to someone

else.

Describing the final design versus how to build it

While it's possible to combine feature and technical specifications into one document,

most of the time they need to be clearly separated sections. One of the worst

specifications I've read fell into the trap of doing these two things at once. The author, as

smart and capable as he was, tried to describe the design while simultaneously explaining

how it would be built. As soon as I opened the document, it was obvious how much time

he must have spent on it.3 He had made large and meticulously crafted diagrams showing

relationships between objects and components, while simultaneously diagramming them

in terms of how they would be used by customers. The result was a beautiful and highly

refined disaster. The spec looked impressive, but after five minutes of reading the thing

and struggling in frustration to make sense of it, I had the urge to throttle him (and

apparently his team had a similar reaction). He'd tried several times to walk people

through it, which, sadly, only served to increase their negative (and latently violent)

responses.

In an attempt to help, I spoke to the spec writer and tried to offer some advice. He

admitted that he'd lost focus and that the spec itself wasn't that important, but he still

believed his approach was good. He claimed that because he knew the programmers

would need a reference for both the expected behavior and the higher-level details of the

object relationships, it made sense to combine them all together. My opinion was that

even if a person needs both kinds of information, there's no reason to assume she needs

them at the same time or on the same page. Often, it's easier to write and read at a single

3 It's always a warning sign to see beautiful or extensive specs. It implies the PM is worried more
about the spec than what goes out the door, or he doesn't trust his team. Worse, very long specs
are an indicator that no one actually read the thing (exceptions include building nuclear reac
tors or high-tech surgical equipment).

WRITING GOOD SPECIFICATIONS 1H1

level of thought, and deal with the story one level at a time, than it is to combine them

together. Good specifications often describe the design in layers: first, what the customer

experiences described in customer language; second, a high-level overview of basic

objects and architecture; and third, coverage of complex and detailed engineering design

issues.

Good specs simplify

The toughest thing for technically minded people to do is to effectively choose which

details to leave out and at what time to do so. Having survived many terrifyingly complex

logic and math classes, I learned that the best teachers knew when to skip over

nonessential, although still important, things and how to return back to them when the

student (or reader) was ready for them. When specs are well written, they use the same

kind of skill. The essentials come through. People gain understanding of the work and

can proceed with clarity. The mental models they had for how things will be constructed

are more refined after reading the spec, and the quality of the questions they can ask the

PM or others on the team is improved. Look for this effect. You never get everyone, but

strive to reach the important contributors to the project.

Of course, complexity is unavoidable for a complicated object model or highly detailed

interface. Some things might take some explanation and time to understand, but be sure

that this is truly the case. More often, complexity is a cop-out that hides poor writing or

mediocre thinking. The entire point to writing the specification is to describe things in a

way that minimizes the amount of work other people will have to do to understand it. In

the worst possible case, it would take someone more time to comprehend the

specification than it would for her to design the thing herself. But as with most matters of

writing, these criteria are highly subjective. Sorting out the right level of clarity and

appropriate complexity is a matter of judgment, and the decision is best left to team

leaders.

But in the name of trying to describe things well, here are some writing tips and things to

avoid in specs:

• Borrow good explanations for things from other specs (even if they are

authored by other people). Use hypertext appropriately and grab useful overviews

from the Web if needed—which should be encouraged by team leaders. You don't

have to invent or describe everything.

• Avoid jargon and obscure language. Don't use it unless you're certain it helps the

reader, which it rarely does. Or, put less usefully, reduce the probable obfuscation of

intentional conceptual matter through attenuated concision of macro-concepts into

disambiguated knowledge transformations and the general abrogation of redundant

lingual assemblages.

1H2 CHAPTER SEVEN

• Hold on to old specifications. They make good references when you're stuck on
how best to present a concept or to diagram something. When you see a good specifi
cation someone else wrote, hold on to that, too.

• Have specific readers in mind when you write. Even on a team of 10 people,
there will likely be 4 or 5 who will depend most heavily on the spec. Add to the mix a
smart person you know, who isn't on the team and isn't familiar with the particular
technology you're using. How would you describe a tough concept to him?

• Don't fall in love with Visio or flowcharts. Maintain platonic relationships with
all tools. Usually, diagrams are interesting only to the person who made them, and
they are often not as effective in helping the project as their creator thinks. Some
times, a good paragraph or a sloppy, hand-drawn sketch is better than a 500-element

UML diagram. (Just because a diagram is the only way for the author to understand

something doesn't guarantee it's the best way to explain it to someone else.) Tools and
diagrams can be great things, just maintain objectivity about them.

• Is it a reference or a specification? Specifications do not generally need to be com
plete APIreferences or describe every singleinstance or possiblebehavior. It's entirely
reasonable to focus on explaining the 10 or 15 common or most important cases and
have a separate document that exhaustively lists the rest (with less detail).

• Before digging in, use pseudocode or even English to describe complex algo
rithms at a high level. As mentioned earlier, consider how a layered approach to
explanation might be the fastest way to learn—even for smart people. At a minimum,
good summaries and overviews go a long way.

And here's one additional trick that I've always found helpful: whenever someone is

confused by something in a draft of your spec (something you will discover only if you

manage to bribe her to read it in the first place), take five minutes to explain it to her.

Once she gets it, ask her if there's a better way you could have explained it in the spec.

Sometimes you'll get good advice and sometimes you won't, but your understanding will

always improve simply because you're forcing yourself to widen your perspective. Each

time you ask another person, you'll be thinking about the particular concept in a slightly

different way, improving the odds of finding a better approach. As the spec author,

remember that good feedback comes more easily if you ask for it than if you wait for it.

Ensure the right thing will happen

Specifications define a set of intentions. They make this claim: "If things go as we expect,

when we finish this work we will have what is described in this document," meaning

that all (or a reasonably large percentage) of the behavior and functionality

communicated in a feature specificationshould be manifested in the final working code

when all is done. While it's entirely possible that the day after the spec is finished the

world may change, on the day it's written the intention remains. When the world

changes, the specification should be updated to reflect this new world and new

intentions—whatever they are.

WRITING GOOD SPECIFICATIONS 143

At an engineering level, the goal of a specification then is to communicate these

intentions to everyone who needs to make use of them. For testers and quality assurance,

this means having enough precision for the expected behavior of a project to write draft

test cases and estimates. Marketing, documentation, and any other specialists on the

project will have other questions they need answered about what the end result will be

like before they can do their jobs. Technical support or account managers will need to

understand how things work so they can support, or plan to support, the work.

One of the best questions to ask people after they've read a specification is: "Do you have

what you need to do your best work?" By putting the focus on the readers, their interest

in it will change. They will ask better questions and put the spec to use, in their minds,

toward the real work that will follow.

Who, when, and how
Much like vision documents, it's very important that specifications have one author.

Everyone who is going to be doing the work should be contributing by making comments

and adding content, but one person needs to filter it, shape it, and make it all fit together.

The reason for this is simple: if you want the specification to read like it was written by a

clear-thinking individual, you can't have different people owning different parts of the

document. As long as that one author understands that it's his job to incorporate good

contributions and suggestions from anyone who offers them, things should work out fine.

Assuming there is one primary author, the likely candidates for the job are the project

manager, designer, or lead programmer. Because specs represent cross-functional

decision making, they should be written by whomever is most accountable for decisions

at that level. The feature specification and the technical specification are obligated to

match and reconnect with the work-item lists the programming team compiled. If

engineering and design have been working together throughout the design process,

making these things match up is straightforward. As a bonus, working together early on

changes the perspective on the spec process: it will be seen as a happy collaboration to

plan work, rather than the beginning of a process of debate and frustration.

For this and other reasons, the specification work should begin during the design phase.

As prototypes are being made and ideas explored, small decisions start to fall out of the

work, and rough-draft specification documents can begin (and should be marked as early

drafts). They can be kept private for a while until there is enough description to be of

value to more than one person. In conversations between project management, design,

marketing, and programming, a slow but steady understanding grows about what the

right design is, and the spec should trail those discussions. As the design process hits the
point in time where there are only two major alternatives, the specification should have

1HH CHAPTER SEVEN

strong momentum behind it. With only two alternatives on the table, specifications can

minimally include all of the common elements and engineering work required in both

alternatives (e.g., a search engine that is needed for both designs), as well as a high-level

listing of the remaining major decisions and their potential implications.

Writing for one versus writing for many

For project managers, specifications are a convenient place to put information of use only

to them. There are often so many questions from different people that the single spec

document becomes, on the surface, the easiest place to track them. Unfortunately, for

anyone but the project manager, this becomes noise. Reading a specification shouldn't

feel like reading the author's work diary (although like many scientists and engineers,

keeping a separate work diary can help you discover good ideas). The larger the team,

and the more specialized roles there are, the worse this problem can be.

However, one of the important functions of the spec is to help the PM directly. Because

she has to organize and lead the effort, the document will likely be modified and read

more often by her than by anyone else. The diary-like dialog that surfaces in the

specification has an important function; there can be value in tracking specific and

detailed bits of information about a project. The trick is to do it in a way that doesn't

obscure the basic narrative and decisions the spec is trying to describe.

So, when authoring a spec, care should be taken to separate out which details service

only the PM and which ones are of value to the rest of the team. The simplest way to do

this is to separate explanations of behavior or functionality in the spec from issues or

questions about the current descriptions. There could be one single list of open issues at

the end of the specification, which is the simplest solution.

When are specs complete?
For any development schedule that has a planning phase, the writing and reviewing of

specifications is its natural conclusion. In theory, the team should know most of the

details for what will be built and how it will be done when the specs are complete. The

project is ready to go at full speed, and the balance of the work shifts from planners and

designers to programmers and testers.

How much is enough?

Deciding when a specification is complete is a judgment call. There are always lingering

issues and questions or dependencies on other companies and projects that haven't

completely sorted themselves out yet. The "spec complete" stamp of approval can mean

very different levels of completeness and quality depending on the project and the team.

WRITING GOOD SPECIFICATIONS 1H5

There's no right or wrong here: sometimes the risk of weaker specifications is outweighed

by schedule pressure or other considerations. Just like any other high-level aspect of a

project (code quality, stability, performance), only the judgment of team leaders can

decide the right level of investment. And, of course, the more iterative the general

engineering strategy is, the more flexibility there will probably be in how specifications

are written.

But as a universal rule, the stronger the specification is, the greater the probability will be

of a timely outcome. The question then is how much probability do you need? Is it worth

the time it takes to make a specification 5% better? Or would the programmers or PM

have figured out those details in the natural course of doing the work? There's no easy

answer. Looking at any given specification, I'd have to use my own judgment. I think it

takes project experience, more so than programming or writing skills, to make that call.

However, the important point is that no matter what level of completeness is expected

before the specs are considered complete, the only way to achieve it is through the

process of review. Because it is very subjective and comparative, the only way to get

specs of a certain quality is to have team leaders (and spec consumers) review and give

feedback on them. (I'll describe this process in the next section.)

How to manage open issues

No matter how well a team manages the design process, there will always be unresolved

issues during spec writing. If these issues aren't managed properly, disaster waits. Many

mid-project disasters are the offspring of mishandled or overlooked spec issues. It's critical

that the PM take initiative in collecting and reviewing these issues, pushing the team to

acknowledge them early on. This is a tough challenge for less-experienced PMs, as they

will be so consumed by other spec-writing tasks that they won't give proper time to

open-issue management. Often, it takes being bitten by an issue late in a project to

recognize the value of early issue tracking.

Effective management of open issues is purely about diligence. Someone has to both

investigate potential problems and take the time to write them down. There's no magic

here. Once they're written down, they can be prioritized, assigned, and resolved; but if

no one takes the time, preventing major problems will be a matter of chance, not skill.

Assuming you do track issues in some way, even if it's just a list on your office

whiteboard, here are some basic questions to help prioritize and refine them:

• When does this issue need to be resolved? Who is the best person to make the deci

sions needed to resolve it?

• Can the issue be isolated in some way, perhaps to a specific component or scenario?

Or does it impact the entire feature or project?

146 CHAPTER SEVEN

• What are the possible resolutions for the problem that are still under consideration?

(For example, we'll use ASPor PHP, but not JSP.) How will each alternative impact
the specification?

• Can we cut this issue? How does it really impact the customer in our priority 1 user
scenario?

• Can the issue be divided into smaller issues that can (should) be delegated to other
people?

• Who or what is blocking resolution of this issue, and are efforts being made to resolve
the block? (This resolution may be technical or political.)

If there are many big issues and it's difficult to divide them, something has gone wrong,

and the design process and/or team leadership has failed. The way out of the problem is

beyond the scope of open-issue management (see Chapter 11).

Closing the spec gap

If you manage open issues well, it's possible to close schedule gaps by making estimates

about how those issues will be resolved. The basic idea, often cynically referred to as

"shot-gunning," is illustrated in Figure 7-1. If this is done properly, a specification can be

reviewed and considered spec-complete on time, even though there are still unresolved

design issues. Shot-gunning does introduce risk: you are estimating how well the team

will resolve remaining issues, instead of waiting for the team to actually resolve them all.

However, it's not necessarily a high-risk move. It all depends on how well-understood

the issues are and how good the assumptions are that have been made about them.

Consider, if you will, two teams. The A-team has a long but well-understood issues list.

The B-team has a small but poorly understood issues list. Which team do you think will

most likely meet its dates? I'd bet on the A-team (play A-Team theme music). If nothing

else, skepticism dictates that the B-team's small issues list implies that they haven't found

all of their spec issues yet. The A-team has spent more time understanding their open

issues and is better prepared for whatever challenges the project holds for them.

FIGURE 7-1. Closing the design/spec gap.

Problem spa.ce
(exploring al-fernA-fives)

^ «k0 " Specification%H ^^ completion da.U

WRITING GOOD SPECIFICATIONS 1H7

It's important to note that closing the gap doesn't mean abandoning the design work

required to finalize those decisions. It means that the PM tries to step back for a moment

and carefully make judgment calls for the sake of maintaining the schedule.

To help in closing the gap, consider the following questions for each open issue:

• Are there work items that will need to be done regardless of which alternative is cho

sen? If so, they should be estimated and added to the spec. If necessary, these work

items can be started before the specification is finalized.

• Can the PM or designer resolve this issue? Will the closure of this issue result in new

work items? (For example, it may be possible to work in parallel with the programmer

starting on understood work items, while the PM drives the open issue to resolution.)

• What are the possible alternatives for resolving this issue that are still in consideration?

• Of the probable alternatives, which is the most expensive? Consider estimating work

items based on this approach, and make the specification and work-item list into a

worst-case design plan.

• Is this a central or core component? When will the programmer need to implement

this? Can this be designed later on during the implementation phase? Is it something

we know few other components are dependent on?

• Can this issue be contained, narrowed, divided, or cut? If not, bump it to the top of

the priority list.

Closing the gap can't always be done successfully. It's possible you'll make a solid push

and progress things forward but still find you're too far away. Even so, the push to close

never hurts. Inexperienced teams often need this kind of pressure to force them to

confront all of their issues (technical and otherwise), and managers might not fully

understand the complexity of what remains until this happens. A good argument can be

made for closing the gap proactively, instead of waiting until the schedule is at risk.

The significance of hitting spec complete

There should be a date on the project schedule for hitting spec complete, and it's perhaps

the most important date for PMs as individual contributors to the project. Often, the

writing of the specification is their primary, or perhaps only, significant literal deliverable

to the project. Once specs have been completed, the PM's focus will shift toward guiding

and leading the project, including helping the team transition into full development.

After spec complete, there should be a change in attitude on the project team. The feeling

should be that for the current milestone, the preliminaries are over: many tough

decisions have already been made. The team has gone through some big challenges in

figuring out the right designs to find one coherent plan. It's up to the PM to make sure

that everyone involved in the effort thus far has some of this perspective and has his

work acknowledged.

1H8 CHAPTER SEVEN

NOTE

Face to face is the best way to tell people you appreciate their work. Don't depend

on an email to the entire team to mean much to anyone. Go door-to-door or call

them on the phone. A short conversation carries more emotional weight than any
email.

Although morale events and pep talks are hard to do well, there should be some kind of

team-wide acknowledgment for the work done to date. Simple things work best: an

afternoon off, a long lunch in the sun, or a week of free beers or snacks in the coffee

room. Some kind of positive break in the routine (e.g., get out of the workplace) is the

best way to help teams transition and recharge in preparation for the different pressures

they will face in the coming weeks or months.

Reviews and feedback

The biggest mistake people make with specifications is waiting until a formal review

process takes place to get feedback. Reviews should be used to refine, not to make a first

pass and a final decision at the same time. This is another reason why a design process is

so important: it means that design decisions have had many iterations, and the authors

have had lots of chances to incorporate good suggestions. Team leaders should make this

happen by being available for informal earlier reviews and by making the draft specs

available on the intranet. But this isn't to say that spec review meetings should be a

Cakewalk; everyone should walk into the review process with a very clear idea of what is

expected of her.

There are different ways to review specifications, but most involve a meeting where the

document is discussed to someone's satisfaction. How formal this meeting is depends on

the attitude of team leaders. However it's done, the goal is to answer the same two

questions: "Is this specification sufficiently detailed to guide us through development?"

and "Will the result satisfy the requirements and goals for this part of the project?" There

are certainly many more specific questions to ask, but they all derive from these two key

ones. The process of review should be directed at answering them confidently.

How to review a specification

The review of a specification should be a team process. While the center of attention is

the document and the people who wrote it, the goal should be to confirm that everyone

who has to do the work agrees with what's in the document. The easiest and fastest way

to do this is by getting them all together in a room so that they will all know the answers

to any questions that are asked. I've seen spec reviews done via email or conference call,

and I can't say I was happy with the results. As soon as a contentious issue came up, I

wished I were in the same room with the team so that I could use whiteboards or hand

WRITING GOOD SPECIFICATIONS 1H9

gestures to explain things in real time. The more complex the spec, the more you want

people in the room. (If you're forced to work virtually, and believe everyone needs to be

in on the review, do it in small groups of three to five. For complex tasks like reviewing

specs, conference calls and video conferences with large groups quickly become

tragicomedies.)

A one- or two-hour block of time should be reserved in a mid-size conference room

several days in advance. If the spec is ready for review (as determined by the author, with

guidance from criteria defined by team leaders), it should go out as part of the meeting

invite. As far as I can remember, I've been able to do this only a handful of times. More

often, I booked the meeting a week or so in advance and informed everyone they'd get

the document via email 24 hours before the spec review meeting. Some people hated

this, but I've learned it's the most successful way to provide an updated document and

get people to read it. With the early warning, people can plan to read the thing in that

24-hour period.

By the same token, I think it's fair to require that those attending the spec review must

read it before they show up. By natural selection, people who really need to read it will

find the time to do so because it will be one of the most important things they're doing.

No matter what they say, if they honestly can't find the time to at least skim the

document for glaring problems, the work is not a top priority for them and they don't

belong in the room.

Whenever I had the authority to do so, I made reading specs before the meeting a rule for

the entire team. This ensures two things. First, it reduces the number of people who

show up to only those who really need to attend. Odds of a packed room filled with

unimportant nitpickers go way down. Second, the review meeting will go much faster

because everyone is starting from a similar depth of understanding. People who did not

read the specification will tend to stand out based on the questions they ask. If their

questions are valid, they should be considered; if they are well covered in the spec, it's

fair to ask them to read that section and follow up with the spec author after the meeting.

Who should be there and how does it work?

There should be at least one person from each major role in the room (programming,

testing, etc.), plus any other major contributing roles (business, design, documentation).

Reviews should be open to the entire team: if testers or programmers were interested in

the spec, and took the time to read it, they should be welcome to attend, even if they

don't work on the specific feature. Team leads should be optional invites, and it's up to

them to decide whether they need to participate in the meeting. If they're doing their

jobs well, they may know enough of the details to attend only the most contentious spec

reviews. On the other hand, if it's an inexperienced team, they may need to attend every

meeting.

150 CHAPTER SEVEN

The actual meeting should be run by the PM (or spec author). The process is simple:

answer questions. If there are no questions (i.e., fantasyland), and the right people are in

the room and are happy with the spec, the review ends. Some PMs like to do

walkthroughs of the final prototype, which is fine. Others prefer to walk through the

document section by section. Personally, I think this is a waste of time (if I wrote a good

spec, and everyone has read it, why go through the whole thing?), but some teams like

it, so use whatever works. The only important thing is that people are engaged in a

healthy discussion, asking good questions, and working together to sort things out.

For any question raised, it's up to the people in the room to discuss the answer to the

question asker's satisfaction or to add a new item to the open-issues list in the spec.

When the questions end, the PM reviews the open-issues list (a whiteboard in the

conference room works well for listing new items) and decides if there is anything

worthy of holding another review discussion. If nothing reaches that bar, the spec is

deemed reviewed, pending investigation and resolution of those new open issues.

After the spec review is complete, the PM should have a timeline for responding to new

questions or issues raised in the meeting. Immediately after the meeting, everyone who

was invited to attend should receive an email with a short summary of the open issues, a

date of the next review (if one was scheduled), and a timeline for when open issues need

to be resolved. This is particularly important if an open issue blocks another person on

the team from doing her work. In fact, blocking issues should be called out during the

spec review and given special attention.

The list of questions

There are some questions that need to be asked in every spec review based on the

common things people have seen go wrong over the years. Even if asking tough

questions doesn't find specific issues, they do force the team to think more critically

about what they are doing. Remember, this isn't a final exam—it's OK for everyone to

know what the questions will be before they show up. It's in your interest to make sure

everyone walks into the review prepared.

Because designing and spec writing are optimistic processes, it's up to the people in the

review to be skeptical and probe for things that might have been overlooked. (Be careful

not to be mean. Being critical does not require going out of your way to be cruel or to make

people feel bad. If a team is woefully under prepared for spec reviews, the responsibility is

often as much on the team leaders as the individuals.) Even if the team knows the right

questions, someone has to push and dig to make sure real answers come out.

Here's my list, although I encourage you to revise these questions and add your own:

• Does the programmer's list of work items match the spec? How does each major com

ponent in the spec relate to each work item? Where in the design is it most likely that
we'll find overlooked work items?

WRITING GOOD SPECIFICATIONS 151

How is this design most likely to break? What are the weakest components or inter

faces? Why can't they be improved?

What is the strongest aspect of this design? What is the weakest? What are we most

and least confident about? Are our strength and confidence centered around the most

important components?

Do we have the right level of quality? Will this be as reliable, performant, and usable

as our project vision demands? Are the test estimates realistic?

Why isn't a simpler design better? Do we really need this much complexity or func

tionality? What evidence do we have or what sound argument can be made not to

make this simpler?

What dependencies does this design have? Are there technologies, corporations,

projects, or other specifications that might fail in a way that damages or prohibits this

work? Do we have any contingency plans?

Which elements of the design are most likely to change? Why?

Do test, documentation, marketing, and all other specialized roles assigned to this

project have all the information they need to do their best work? What are their top

concerns, and how will they be addressed? Or, are there sound reasons we can ignore

them?

What are the PM's, programmer's, and tester's major concerns with this specification?

With this feature?

Are there opportunities to share or borrow code with other features being built for this

project?

Have we met our accessibility and localization requirements for the UI?

What are the security risks of this design? Why doesn't it make sense to eliminate

them? Are they documented in the specification, including potential remedies (i.e.,

threat models)?

Do we have credible evidence indicating that specified users can use this UI design to

successfully do what they need to do?

Summary
Specs should do three things: ensure that the right product gets built, provide a sched

ule milestone that concludes a planning phase of a project, and enable deep review

and feedback from different individuals over the course of the project.

Specs solve only certain problems. Team leaders should be clear on what problems

they are trying to solve with specs, and what problems need to be solved through

other means.

Good specs simplify. They are primarily a form of communication.

Specifying is very different from designing.

152 CHAPTER SEVEN

• There should be clear authority for who writes and has control over the spec.

• Closing the gap is one approach to managing open issues and to accelerate the end of

the specification process.

• A review process is the simplest way to define and control spec quality.

Exercises

A. Get a big bunch of LEGO pieces and find another project manager. Divide the LEGOs

into two piles, putting the same number and type into each pile. Sit back to back with

the other PM, while one of you creates something with the LEGOs (doesn't matter

what it is). After it's made, the person who made it must instruct the other, using only
words, how to make the same object. Compare the results. Then repeat, switching

roles.

B. Why do PMs try to use specifications for things they cannot do? What problem are

they trying (and failing) to solve?

C What does the quality of a specification tell you about a project manager? Can you

guess, based on a specification alone, what the quality of the software will be?

D. Visualize something you do often and almost effortlessly, like tying your shoes, setting

an alarm clock, or starting a DVD. Write down how you do it so that another person

could follow your directions. Draw a sketch to illustrate how to do it. Try to follow

what you wrote, exactly as written, or ask someone else to. Pay attention to the

results, revise, and do it again.

E. Find the worst specification you've ever seen (ask your friends, teammates, anyone

you know who works in a field that has specifications). Now ask them for the best

specifications. Make your own list of the common attributes found, both positive and

negative.

F. How can you be sure a specification has the right level of detail? Can you think of

ways to detect when you've gone too far, or haven't gone far enough?

G. Do you know someone who is addicted to Visio, UML, or another tool? Do you have

evidence this addiction is leading to bad specifications? Do something good for your

team: stage a Visio intervention. Get all the people together who consume his specs,

have them all sign a petition for less Visio documents, and give it to the PM. Include

the list of what specifications can and cannot do.

H. If you know spec complete is only a few days away, how can you make sure your

remaining time is used effectively? Can you prep the rest of your team to help you?

What can you do to maximize the odds that your spec review will go well?

I. Imagine this scenario: you write a brilliant spec, with amazing pictures, clear writing,

and thorough documentation. But your best engineer hates it. She hates not only how

it is written, but also the ideas it represents. Spec complete is only two days away.

What can you do? What might you do next time to prevent this situation?

WRITING GOOD SPECIFICATIONS 153

&mi

&&

CHAPTER EIGHT

How to make good decisions

I n the process of writing this book, I interviewed more than a dozen project managers.

One question I asked was how to make good decisions. Their answers included weighing

options, defining criteria, and seeking out different ways to resolve the situation at hand.

But when I asked how many decisions they made a day, and how often they used the

techniques they named, they often realized something was wrong. Many admitted (after

looking over their shoulders to make sure no one else would hear) that it was impossible

to always follow any formalized process for making decisions, given the limited time they

had and the number of things they needed to get done.

Instead, they conceded that they often work on intuition, reasonable assumption, and a

quick projection of the immediate issue against the larger goals of the project. If they can,

they will reapply logic used for previous decisions or make use of experience from

previous projects. But as reasonable as this answer sounded every time I heard it, the

project manager and I found something disappointing about it. I think we all want to

believe that all decisions are made with care and consideration, even though we know it

can't possibly be so. There is limited time and limited brain power, and not all decisions

can be made equally well.

Failures in decision making occur most often not because the decision maker was weak-

minded or inexperienced, but simply because he invested his energy poorly across all of

the different decisions he had to make. There is a meta-process of deciding which

decisions to invest time and energy in. It takes experience and the willingness to review

mistakes and learn from them to get better at this higher-level decision making.

(Different types of training can be done to develop these skills,1 but I've never seen or

heard of them as core components of any computer science or project management

curriculum.)

It's the ability to make effective decisions that explains how some people can manage five

times as much work (or people) as others: they instinctively divide work into meaningful

pieces, find the decisions and actions that have the most leverage, and invest their energy

in making those decisions as good as possible. For the decisions they must invest less time

in, any errors or problems caused by them should be easier to recover from than the

mistakes they might have made in important decisions.

It's curious then that when "decision-making skills" are taught in universities, students

typically learn the methods of utility theory or decision tree analysis: processes where

choices are assigned numerical values and computations are made against them (cost-

benefit analysis is another commonly taught method). Many MBA degree programs

1 Training through simulation is the best way to develop decision-making skills. Simulations put
students at the center of the experience, instead of the teacher. See Serious Games, by Clark Abt
(Viking, 1970).

156 CHAPTER EIGHT

include this kind of training.2 But little coverage is offered for higher-level decisions or

other practical considerations of decision making outside of the classroom. Methods like

decision tree analysis demand the quantifying of all elements, which works well for

exclusively financially based decisions, but is a stretch for design, strategy, or

organizational decisions.

It's not surprising then that of the project managers I interviewed, few had formal

training in decision making, and of those who did, few used it often. This anecdotal

observation fits with what Gary Klein wrote in his book, Sources ofPower: HowPeople Make

Decisions (MIT Press, 1999): "...be skeptical of courses in formal methods of decision

making. They are teaching methods people seldom use." Klein goes on to explain the

many different ways that skilled airline pilots, firefighters, and trauma nurses make

decisions, and how rare it is that formalized methods found in textbooks are used to get

things done. This doesn't mean these methods are bad, just that the textbooks rarely

provide any evidence about who uses the methods or how successful they are, compared

to other techniques.

Much like project managers, Klein observed that these skilled professionals rarely have

enough information or time to make those decision methods work. Instead, they have

four things: experience, intuition, training, and each other. They make good decisions by

maximizing those resources. In some cases, such as with fighter pilots or medical

students, training is designed with this in mind. Instead of memorizing idealized

procedures or theories during training, an emphasis is placed on developing experience

through simulations of common problems and challenges.

In this chapter, my coverage of decision making focuses on three aspects: understanding

what's at stake, finding and weighing options (if necessary), and using information

properly.

Sizing up a decision (what's at stake)
Everything you do every day is a kind of decision—what time to wake up, what to eat for

breakfast, and who to talk to first at work. We don't often think of these as decisions

because the consequences are so small, but we are always making choices. We all have

our own natural judgments for which decisions in our lives demand more consideration,

and the same kind of logic applies to project management decisions. Some choices, like

hiring/firing employees or defining goals, will have ramifications that last for months or

years. Because these decisions will have a longer and deeper impact, it makes sense to

2 The Ten-Day MBA, by Steven Silbiger (Quill, 1999) includes a compact chapter on basic decision
tree theory. The book does a good job of summarizing the core of many MBA programs.

HOW TO MAKE GOOD DECISIONS 157

spend more time considering the choices and thinking through their different tradeoffs.

Logically, smaller or less-important decisions deserve less energy.

So, the first part of decision making is to determine the significance of the decision at

hand. Much of the time, we do this instinctively—we respond to the issue and use our

personal judgment. Am I confident that I can make a good decision on the spot, or do I

need more time for this? It often takes only a few moments to sort this out. However, this

is precisely where many of us run into trouble. Those instincts might be guided by the

right or wrong factors. Without occasionally breaking down a decision to evaluate the

pieces that lead to that judgment, we don't really know what biases and assumptions are

driving our thinking (e.g., desiring a promotion, protecting a pet feature, or ignoring

decisions that scare us).

With that in mind, here are questions to use in sizing up a decision.

• What problem is at the core of the decision? Decisions often arise in response to

new information, and the initial way the issue is raised focuses on the acute and nar

row aspects of the problem. So, the first thing is to ask probing questions. For exam

ple, the problem might be defined initially as, "We don't have time to fix all 50 known

bugs we've found," but the real issue is probably "We have no criteria for how to tri

age bugs." Redefining the decision, into a more useful form improves decision quality.

Being calm in response to a seemingly urgent issue helps make this happen. Ask ques

tions like: What is the cause of this problem? Is it isolated or will it impact other areas?

Whose problem is it? Which goals in the vision doesn't it put at risk? Did we already

make this decision in the spec and, if so, do we have good reasons to reconsider now?

• How long will this decision impact the project? How deep will the impact

be? A big decision, such as the direction of the vision or the technology to use, will

impact the entire project. A small decision, such as what time to have a meeting or

what the agenda should be, will impact a small number of people in a limited way. If

it's a long-term decision, and the impact is deep, patience and rigor are required. If it's

a short-term decision with shallow impact, go for speed and clarity, based on a clear

sense of the strategic decisions made in the vision. Generally, it's best to make big

decisions early on or in a given phase of a project so they can be made with patient

thought and consideration, instead of when time is running out. (This is similar to

some of the considerations discussed in Chapter 2.)

• If you're wrong, what's the impact/cost? What other decisions will be

impacted as a result? If the impact is small or negligible, then there isn't much to

lose. However, this doesn't mean you should start flipping coins. For aspects of

projects such as usability or reliability, quality comes from many small decisions being

aligned with each other. The phrase "Death by a thousand cuts"3 comes from this situ

ation, where it's not one big mistake that gets you: it's the many tiny ones. So, you

3 The complete phrase is "Death by 1,000 cuts"—as in paper cuts. Yuck.

158 CHAPTER EIGHT

must at least consider whether the choice is truly isolated. If it isn't, it's best to try and

make several choices at once. For example, either follow the same UI design guide

lines on all pages, refactor all the code that uses the same API, or cut those features

completely. Get as much mileage as possible out of each decision you make.

What is the window of opportunity? If you wait too long to make the decision, it

can be made for you—routes will close and options will go away. In this universe, big

decisions don't necessarily come with greater amounts of time to make them. Some

times, you have to make tough strategic decisions quickly because of the limited win

dow of opportunity you have. And sometimes, the speed of making a decision is more

important than the quality of the decision itself.4

Have we made this kind of decision before? This is the arrogance test. If I put you

in an emergency room with a patient squirming on the operating table and asked you

to perform heart bypass surgery, how confident would you be? There is no shame in

admitting ignorance: it generally takes courage to do so. If you're working on any

thing difficult, there will be times when you have no idea how to do something. Don't

hide this (unless you're choosing speed over quality for the decision in question), or

let anyone else hide it. Instead, identify that you think the team, or yourself, is inex

perienced with this kind of choice and needs outside help, or more time. If a leader

admits to ignorance, she makes it OK for everyone else to do the same. Suddenly,

decision making for the entire team will improve because people are finally being

honest.

Who has the expert perspective? Is this really my decision? Just because some

one asks you to decide something doesn't mean you're the best person to make the

call. You are better at some decisions than others, so don't rely on your own decision

making limitations. Never be afraid to pick up the phone and call the people who

know more than you do about an issue. At least ask for their consultation and bring

them into the discussion. Consider delegating the choice entirely to them: ask whether

they think it's their call to make or yours. If the relationship is good, it might be best

to collaborate, although this requires the most time for both parties.

Whose approval do we need? Whose feedback do we want/need before we

decide? The larger the organization, the more overhead costs there are around deci

sions. A trivial decision can become complex when the politics of stakeholders come

into play (see Chapter 16). A good test of your authority is how often trivial decisions

require approvals or the formation of committees. The more processes there are

around decisions, the more you must work through influence rather than decree.

There are political costs to decisions that have nothing to do with technology, busi

ness, or customer considerations, and the impact of a decision includes them.

This is often true in competitive situations. Quick action can shift what in military terminology
is called the burden of uncertainty. By taking early action, you force the competitor (or partner)
to respond. Often, whoever feels they have an advantage (resources, skills, terrain, brains) takes
this initiative.

HOW TO MAKE GOOD DECISIONS 159

Finding and weighing options
In Sourcesof Power: How PeopleMake Decisions, Klein identifies two basic ways people make

decisions: singular evaluation and comparative evaluation (see Table 8-1). In singular

evaluation, the first option is considered and checked against some kind of criteria (do I

want to wear this green shirt today?). If it meets the criteria, it's chosen and the decision

maker moves on to more important things. If it doesn't meet the criteria, another idea or

choice is considered, and the process repeats (how about this yellow shirt?). Examples

include finding a bathroom after drinking a liter of soda, or finding something to eat after

fasting for three days. The first available restroom or restaurant you find is sufficient, and

there's no need to explore for alternatives.

At the other end of the decision-making spectrum, comparative evaluation requires

seeking alternatives before deciding. Considering what city to move your family to is a

good example of a common comparative evaluation decision.

Decision approach How it works Example

Singular evaluation The first reasonable alternative found

is accepted.
You've been wounded by zombies
and need to find a hospital.

Comparative evaluation Several alternatives are evaluated

against each other before deciding.
You have only one extra anti-zombie
inoculation and must decide who on

the planet to save.

TABLE 8 -1. Thetwo basic wayspeople makedecisions

Singular evaluation makes sense for situations where the difference between a great

solution and a decent solution isn't important. Klein describes these situations as being in

the zone of indifference because the decision maker is indifferent to major aspects of the

outcome as long as a basic criterion is met. Being able to recognize when all of the

alternatives are in the zone of indifference (see Figure 8-1) can save a project significant

time, enabling you to end debates and discussions early on and to focus energy on the

complex decisions worthy of more thought. Good decision makers don't waste time

optimizing things that don't need to be optimized. As Tyler Durden says, "That which

doesn't matter truly should not matter."

Comparative evaluation is best for complex situations that involve many variables, have

consequences that are difficult to grasp quickly, or require a high quality outcome. New

situations or problems that are strategic in nature are prime candidates for comparative

evaluation. The more that is at stake in a decision, and the less familiar everyone is with

the nature of the options, the more appropriate a comparative evaluation is. With teams,

comparative evaluation is the best framework to use if you have to convince others or

want their participation in the decision-making process. Comparative evaluation forces

you to make relative arguments and develop deeper rationales for action, which is useful

for group discussion and communication.

160 CHAPTER EIGHT

FIGURE 8-1. Thezone ofindifference contains the aspects ofa problem you do not care about; single

evaluation implies thatyou have a largerzone of indifference than comparative evaluation.

Most of the time, there's every reason to do quick comparisons. There are many different

ways to do comparative evaluation, and some are less elaborate than others. For

example, it doesn't take more than a few minutes to list out a few alternatives for a

decision on a whiteboard and to make some quick judgments about their relative value.

And even when working alone, I've found that making a short list of comparisons is a

great way to check my own sanity. If I can't come up with more than one choice, I

clearly don't understand the problem well enough: there are always alternatives.

Emotions and clarity

Few people talk about them, but there are always emotional and psychological issues

involved in decision making. Richard Restak, author of The Secret Lifeof theBrain (Joseph

Henry Press, 2001), wrote, 'There is no such thing as a non-emotional moment." We

always have fears, desires, and personal motivations for things, whether we acknowledge

them or are even aware of them. Even altruistic motivations, such as wanting the best

outcome for the project or for the people involved, have emotional components.

This means that even the most logical business-like person in the room has feelings about

what he's doing, whether he is aware of them or not. Sometimes emotions are useful in

making decisions, but other times they slow us down or bias us against things we need to

consider. And beyond personal feelings, the act of decision making itself involves pressure

and stress, and it can create emotions and feelings that have nothing to do with the

matter at hand. By externalizing the decision-making process through writing or talking,

you can share emotional burden and increase the odds of finding clarity.

The easy way to comparison

Comparative evaluation can happen only if you've clarified the problem or issue to be

decided. You also need a sense for desirable outcomes (ship sooner, improve quality,

make the VP happy, etc.). Borrow words and phrasing from the vision document,

specifications, or requirements lists. Those documents reflect big decisions that have

HOW TO MAKE GOOD DECISIONS 161

already been made, so use them as leverage. Sometimes a quick conversation with the

client, customer, or author of those documents is better than the documents themselves.

If you're familiar with the specifics of the issue, or can get in a room with someone who

is, it takes only a few minutes to come up with a decent list of possible choices. With a

quick list, you'll start to feel better about your alternatives and will have a basis for

bringing other people into the discussion. Sometimes, it will be obvious that one choice is

dramatically better than the others, and no further analysis is necessary. But often you'll

find the opposite: what appeared to be a no-brainer is more complicated than first

thought. By writing down the choices, you get a chance to recognize that other issues

were hiding from you.

The simplest way to do this is with a gpod old pros and cons list (see Figure 8-2). I'm not

sure when in life we learn it, but most everyone I've ever taught or managed was

somehow familiar with making this type of list. What's strange is that it's uncommon to

see people use these lists in meetings or discussions, perhaps because they're afraid that

by writing down their thought processes, others will think they're not smart enough to

keep it in their heads.

Problem'. Ovr lead programmer eyi-f.
(Sroa/siVo no4 slip 4he schedule. MaJn-faJn qya,li4y. Maximize customer sa.4is-fa.c4ion.

Pros Cons

Cu4 fe*4vre A

Cu4 •fea.Jvre 3

Cv4 feaAvre C

Le4 customer decide

T>o r\o4hin§

FIGURE 8-2. The pros and cons list

Apparently, the pros/cons list dates back to at least the 15th century, when it was used as

a tool to help settle public debates. Then, centuries later, Benjamin Franklin applied the

technique to his own decision making, so he is credited with popularizing it in the U.S.5

As simple as this kind of list is, there are important considerations for using it effectively:

5 A short history of the pros/cons list can be found in the pamphlet, "How to Make a Decision"
(Who's There, Inc., 2003), which can be purchased from http://www.knockknock.biz. In 32 enter
taining pages, this title covers techniques like flipping coins, rock-paper-scissors, eenie-meenie-
minie-moe, etc.

162 CHAPTER EIGHT

Always include a "do nothing" option. Not every decision or problem demands
action. Sometimes, the best way to go is to do nothing, let whatever happens happen,
and invest energy elsewhere. Sunkcosts are rarely worth trying to recover. Always
give yourself this option, evenifonly to force the teamto understand exactly what's
at stake in the decision. Dependingon your localpolitics, having "do nothing" on the
list can givemore relativevalue to any other decision that you make because it
reminds people that there isno universal lawthat says you mustdo something about
a problem.

How do you know what you think you know? This should be a question every
one is comfortable asking. It allows people to check assumptions and to question
claims that, while convenient, are not based on any kind of data, firsthand knowl
edge, or research. It's OK to make big unsupported claims—"I'm 100% positive this
function will be reliable"—as long as everyone knows the only thing behind it is the
opinion of the personmaking it (andcan then judge it on that merit). As appropriate,
seek out data and research to help answer important questions or claims.

Ask tough questions. Cut to the chase about the impact of decisions. Be direct and
honest. Push hard to get to the core of what the options look like. (See the section
"Keeping it real" in Chapter 13.) The quicker you get to the heart of the issue and a
true understanding of the choices, the sooner you can move on to the next decision.
Be critical and skeptical. Ask everyone to put feelings and personal preferencesaside:
don't allowgoodideasto hide behind the fear of hurting someone's feelings. Showthe
list to others on the team, and add in their questions or meaningful comments. Put

any questions or possible assumptions in the prosor cons columnfor a givenidea; an
unanswered question can still help clarify what a given choice really means.

Have a dissenting opinion. For important decisions, it's critical to include unpopu
lar but reasonable choices. Make sure to include opinions or choices you personally
don't like, but for which good arguments can be made. This keeps you honest and
gives anyone who sees the pros/cons list a chance to convince you into making a bet
ter decision than the one you might have arrived at on your own. Don't be afraid to
askyourself, "Whatchoice would make me lookthe worstbut mightstill help the
project?" or "Are there any good choices that mightrequirethat I admit that I'm
wrong about something?"

Consider hybrid choices. Sometimes it's possible to take an attribute of one choice
and add it to another. Likeexploratory design, there are always interesting combina
tions in decisionmaking. However, be warned that this does explode the number of
choices, which can slow things down and create more complexity than you need.
Watch for the zone of indifference and don't waste time in it.

Include any relevant perspectives. Consider if this decision impactsmore than just
the technologyof the project. Are there business concerns that willbe impacted?
Usability? Localization? If these things are project goals and are impacted by the deci
sion, add them into the mix. Even if it's a purely technological decision, there are dif
ferent perspectives involved: performance, reliability, extensibility, and cost.

HOW TO MAKE GOOD DECISIONS 163

• Start on paper or a whiteboard. When you're first coming up withideas/options,
you want the process to be lightweight and fast. It should be easy to cross things out,
make hybrids, or write things down rapid-fire (much like early on in the design pro
cess). Don't start by making a fancy Excel spreadsheet, with 15 multicolored columns

enabled for pivot tables; you'll miss the point. For some decisions that are resolved
quickly, the whiteboard listis allyou'lleverneed. If it turns out you need to show the
pros/cons listat an important meeting, worry aboutmaking an elaborate spreadsheet
or slide deck later.

• Refine until stable. Ifyou keepworking at the list, it will eventually settledown
intoa stable set. The same core questions or opinions will keep coming up, and you
won't hear any major new commentaryfrom the smart people you work with. When
allofthe logical and reasonable ideas have beenvetted out, and showing the listto
people only comes up with the same set ofchoices you've already heard, it'sprobably
time to move on and decide.

NOTE

A simple exercisefor the reader is to add to the list shown in Figure 8-2. Given how
little detail of the situation is provided, there are at least a dozen other reasonable
options that could be added. A nice prize will be given to anyone who names them
all.

Discuss and evaluate

Effective decisions can be made only when there is a list of choices and some

understanding ofhow the choices compare to eachother.Witha listin place, a person
can walk through the choices and develop an opinionabout which optionshave the
greatest potential. It's often only through discussion that strong opinions can be

developed, and the list of choices actsas a natural discussion facilitator (we'll discuss
facilitation in Chapter 9). I always try to put thesedecision matrixes up on a whiteboard,
so when people walkinto my office and askabout the statusofan issue, I can point them
to exactly where lam and show them why I'm leaning in a particular direction. Even if I
don't havea conclusion yet, it's easy forthemto understand why (perhaps buying me
more time to make the decision). More so, I can ask them to review it with me, hear out

my logic, and offer me their opinions. Instead of trying to explain it all on the fly, the
pros/cons list documents all of the considerationsand adds credibility to whatever
opinion I've developed.

On teams that communicate well, it's natural to discuss critical decisions as a group. Each
person in the discussion tries to stringtogetherassumptions pulledfrom the pros/conslist
and makesan argument for one particulardecision. You'll hear each person voice her
opinion in terms of a story—"If we do this, then X will happen first, but we'll be able to

do Y"—and then someone elsewillchimein, refining the story or questioning one of the
assumptions. The story gets refined, and the pros and cons for choicesget adjusted to

16H CHAPTER EIGHT

capture the clearer thinking that the group has arrived at. Over time (which might be
minutesor days), everyone involved, especially the decision maker, has a full
understanding of what the decision meansand what tradeoffs are involved. When the
pros and cons list stabilizes, and little newinformation isbeing added, it's timeto try and
eliminate choices.

Sherlock Holmes, Occam's Razor, and reflection

The character Sherlock Holmes once said, "If you eliminate the impossible, whatever

remains, however improbable, must be the truth." And so it goeswith decision making: if
you eliminate the worst choices, whateverremains, howeverbad, must be your best
choice. This is admittedly a cynicalway to decide things, but sometimes eliminative logic

is the only way to gain momentum toward a decision.

If you've created a list of possible choicesand need to narrow the field, look for choices
that do not meet the minimum bar for the project. You might have included them earlier

on because they added to the discussion and provided an opportunity to find hybrid
choices, or because the requirements were being reconsidered, but now it's time to cut

them loose. Review your documents and requirements lists, check with your customer,

and cross off choices that just won't be good enough.

Another tool to narrow the possibilities is a principle known as Occam's Razor. William of

Occam was a medieval philosopher in the 12th century who's credited with using the

notion of simplicity to drive decisions. He believed that people add complexity to

situations unnecessarily. He suggested that the best way to figure things out was to find

the simplestexplanation and use that first because, most of the time, it was the right

explanation (i.e., in modern parlance, "Keep it simple, stupid").6

Occam's Razor refers to the process of trying to cut away all of the unneeded details that

get in the way and return to the heart of the problem. It also implies that the solution

with the simplest logic has the greatest odds of being the best. There might be a promising

choice that requires risky engineering or new dependencies on unreliable people.

ApplyingOccam's Razor, that choice's lack of simplicity would be a reason for taking it

off the list of possibilities.

But to apply Occam's Razor effectively, you need time to reflect. After long hours
pounding away at the same issues, you lose perspective. When all the choices start

looking the same, it's time to get away. Go for a walk, get some coffee with a friend, or

do anything to clear your mind and think about something else. You need to be able to

6 The weakness of Occam's Razor is its vulnerability to local maximums. For example, if you stand
on a hill, and can't see anything on the horizon taller than you, you'd assume you were on the
tallest point on Earth. There can be information you don't have, that if you had it, would inval
idate your assumption.

HOW TO MAKE GOOD DECISIONS 165

lookat the choices with a clear and fresh mindin order to make an effective decision,
and you can't do that if you continue to stare at it all day.

Reflection ishighly underrated asa decision-making tool. To reflect means to step back
and allow all of the information you've been working with to sink in. Often, real

understanding happensonly when we relaxand allow our brainsto process the
information we've consumed. I find doing something physical likegoing for a run or
walk is the bestwayto allow mymind to relax. Other times, doing something purely for
fun does the trick, likeparticipating in a Nerf fight or playing with my dog. It's also hard
to beat a good night's sleep (perhaps preceded by a collaborative romp between the
sheets) for clearing the mind. Buteveryone is different, and you have to figure out for
yourself the bestwayto give yourmindtimeto digest everything you'vebeen thinking
about.

When you do comeback to your comparison list, briefly remind yourselfwhat the core
issues are. Then, thinking of Occam, look at the alternatives and ask yourselfwhich
choice provides the simplest wayto solve the problem at hand. Thesimplest choice might
not promise the best possible outcome, but because of its simplicity, it might have the
greatest odds of successfully resolving the problemto a satisfactory level.

Information is a flashlight
Most people educated in the Western world are taught to trust numbers. We find it easier

to workwith numbers and makecomparisons with them than with abstract feelings or
ideas. Decision and utility theory, mentioned briefly earlier, depends on this notion by
claiming that we makebetter decisions ifwe can convert our desires and the probabilities
of choices into numbers and make calculations basedon them. Despite my earlier
criticism of these theories, sometimes forcing ourselves to put numerical values on things
can help us define our true opinions and make decisions on them.

But decisions aside, we commonly like to see evidence for claims in numeric form. There

is a difference in usefulness and believability in someone saying "Oursearchengine is
12% sloweron 3-word queries" than "The systemis slow." Numerical data gives a kind
of precision that human languagecannot. Moreso, numerical data is often demanded by
people to support claimsthat they make. The statement "The system is slow" begs the
question "How do you know this?" The lack of some kind of study or research into the

answer makes the claim difficult to trust, or dependent solely on the opinion and

judgment of the person saying it. Sometimes a specific piece of information answers an

important question and resolves a decision much faster than possible otherwise.

166 CHAPTER EIGHT

Data does not make decisions

The first misconception about information is that it rarely makes a decision for you. A

good piece of information works like a flashlight. It helps illuminate a space and allows
someone who is looking carefully to seedetails and boundaries that were invisible before.
If there is currently no data into a claim, takingthe time to get data can accelerate the
decision-making process. The fog lifts and things become clear. But returns diminish over
time. After the first light has been lit and the basicdetails have been revealed, no amount
of information can change the nature of what's been seen. If you're stranded in the
middle of the Pacific Ocean, knowing the current water temperature or the subspecies of

fish nearby won't factor much in your survival decisions (but knowing the water
currents, trade routes, and constellations might). For most tough decisions, the problem

isn't a lack of data. Tough decisions exist no matter how much information you have.
Thephenomenonof analysis paralysis, wherepeople analyze obsessively, is symptomatic
of the desperate belief that if only there wasenoughdata, the decision would resolve
itself. Sadly, this isn't so. Information helps, but only so much.

It's easy to misinterpret data

The second misnomer about data is that it's all created equally. It turns out that when

working with numbers, it's very easy to misinterpret information. As Darrell Huff wrote
in How to Lie with Statistics (W.W. Norton, 1993), "The secret language of statistics, so
appealing in a fact-minded culture, is employed to sensationalize, inflate, confuse, and
oversimplify." Huff categorizes the many simple ways the same data canbe manipulated
to make opposing arguments, and he offers advice that should be standard training for
decision makers everywhere. Most of the tricks involve the omission of importantdetails
or the exclusive selection of information that supports a desired claim.

Forexample, let's say a popular sports drink hasan advertisement that claims "Used by 5
out of6 superstars." It sounds impressive, but which superstars are using the product?
What exactly separates a starfrom a superstar? Whoever theyare, how were they chosen
for the survey? How do they use the drink—to washtheir cars? Were they paidfirst, or
werethey rejected from the survey if they didn't already use the drink? Who knows. The
advertisement certainly wouldn't say. If you look carefullyat all kinds of data, from
medical research to business analysis to technological trends, you'll find all kinds of
startling assumptions and caveats tucked away in the fine print, or not mentioned at all.
Many surveys and research reports are funded primarily bypeople who havemuchto
gain byparticular results. Worse, in many cases, it'smagazines and newspaper articles
writtenby people other than those doing the research that are our point ofcontact to the
information, and their objectives and sense of academic scrutiny are often not as high as

we'd like them to be.

HOW TO MAKE GOOD DECISIONS 167

Research as ammunition

The last thing to watch out for is ammunitionpretendingto be research. There is a world
of difference between trying tounderstand something and trying to support a specific pet
theory. What happens alltoo often is that someone (let's call him Skip) hasan ideabut
no data, and he seeks out data that fits his theory. As soonas Skip finds it, he returns to
whomever he's trying to convince and says, "See! This proves I'mright." Not having any
reason to doubt the data, the person yields and Skip gets hisway. Butsadly, Skip's
supporting evidence proves almost nothing. One pile of research saying Pepsi isbetter
than Coke doesn't mean there isn'tanother pile ofresearch somewhere that proves the
opposite. Research, to be ofhonestuse, has to seek out evidence for the claim in question
and evidence to dispute the claim (this isa very simple and partial explanation ofwhat is
often referred to as the scientificmethod). Good researchers and scientists do this. Good

advertisers, marketers, andpeople trying to sell things (including ideas) typically don't.

Thebest defense against data manipulation and misinterpretation is direct
communication betweenpeople. Talk to the person who wrote the report instead ofjust
reading it.Avoid second-, third-, andfourth-hand information whenever possible.
Talkingto the expert directly often reveals details and nuances that are useful but were

inappropriate for inclusion ina report orpresentation. Instead of depending exclusively
onthatforwarded bitofemail, call theprogrammer ormarketer onthephone and get his
opinion on the decision you're facing. There's always greater value in people than in
information. The person writing the report learned 1,000 things she couldn'tinclude in it
but wouldnow love to sharewith someone curious enoughto ask.

Aside from using people assources, a culture ofquestioning isthe best way to understand
and minimize therisks ofinformation. As we covered earlier in matters ofdesign and
decision making, questions lead to alternatives, and theyhelp everyone to consider what
might bemissing or assumed in the information presented. Questioning also leads to the
desire fordatafrom different sources, possibly from people or organizations with different
agendas orbiases, allowing for thedecision maker and thegroup to obtain a clear picture
of the world they're trying to make decisions in.

Precision is not accuracy

As a last note about information and data, many of us forget the distinction between
precision and accuracy. Precision ishowspecific a measurement is; accuracy ishow close
to reality a measurement is. Simply because weareoffered a precise number (say, a work
estimate of 5.273 days) doesn'tmeanit hasany greater likelihood ofbeing accurate than
a fuzzier number (4or 5 days). We tend to confuse precision and accuracy because we
assume ifsomeone has taken the time to figure out such a specific number, the analysis
should improve the odds that his estimation isgood. The trap isthat bogus precision is
free. IfI take a wild-assed guess (aka WAG) at next year's revenue ($5.5 million), and

168 CHAPTER EIGHT

another one for next year's expenses ($2.35 million), I can combine them to produce a
convincing-sounding profit projection: $3.15 million. Precise? Yes. Accurate? Who
knows. Without asking "How do you know this?" or "How was this data produced?", it's
impossible to be sureif those decimal places represent accuracy or just precision. Make a
habit of breaking other people's bad habits of misleading uses of precision.

The courage to decide
"All know the way; few actually walk it."

—Bodhidharma

There is a big difference between knowing the right choice and making the right choice.
Oftenmany people can figure out the rightdecision, but very few will be willing to stand
up and put themselves and their reputations behind it. You will always find more people
willing to criticize and ridicule you for your decisions than peoplewilling to take on the
responsibility and pressureto make the decision themselves. Always keep this in mind.
Decision making is a courageous act. The best decisions for projectsare often unpopular,
will upset or disappoint some important people on the team, and will make you an easy

target for blame if things go wrong.

These burdens are common for anyone trying to engage in leadership activity. Decision

making is one of the most central things leaders and managersdo, and the better the
leader, the more courage that's required in the kinds of decisions that she makes (see the

section "Trust in yourself (self-reliance)" in Chapter 12).

Some decisions have no winning choices

One of the ugliest decisionsI've made as a project manager involved the explorer bar
component of Internet Explorer 4.0. The explorer bar was a new part of the user

interface that added a vertical strip to the left part of the browser to aid users in

navigating through search results, their favorites list, and a history of sites they'd visited.
With a few weeks left before our first beta (aka test) release, we developed concerns

about a design issue. We'd known about the problem for some time, but with the

increasing public pressure of what were called the "browser wars," we began to fear that

this problem could hurt us in the press if we shipped with it.

The issue was this: it was possible, in special cases, to view the explorer bar in the same

window as the filesystem explorer, allowing for a user to create a web browser that

divided the screen into three ugly vertical strips, leaving a small area for actually viewing

web pages. After seeing the press and the industry scrutinize IE 3.0, we feared beta users

or journalists might discover this condition, make a screenshot of it, and release it as part

of their reviews. Product reviews were critically important, especially for beta releases.

HOW TO MAKE GOOD DECISIONS 169

There wasconsensus on the teamand pressure from seniormanagement that we had to
take action and do something.

I made a pros and cons list quickly, discussed it withmyprogrammers and other project
managers, and identified three viable choices. Theywere all bad. Fixing the problem
properly required five days of work, which we didn't have. We'd have to cut another

major feature to do that workin time, and it would be devastating to the quality of the
release to do so. There was a hackysolution, requiringtwo days of work, that eliminated
some of the cases that caused this condition, but it was work that would have to be

thrown awaylater (the workwasgood enough fora beta release, but not good enough
for a final release). The last choice was to do nothing and bet that no one would discover
this issue. I desperately looked forother alternatives but didn't findany. Every idea
people came to me with led back downto thesethree choices. I remember sitting in my
office one night until very late, just staring at my whiteboard and goingaround in circles
on what I should do.

Everyproject manager can tell storiesof tough choices they had to make. If you have
responsibility, they come with the territory. They can involve decisions of budget, hiring,
firing, business deals, technology, litigation, negotiation, design, business strategy, you
name it. When faced with a tough decision, there is no single right answer. In fact, it's

entirely possible that things may happen to make none of the available choices (or all of
them) lead to success. Decisionmaking, no matter how well researched or scrutinized, is
another act of prediction. At some level, any tough decision comes down in the end to

the projectmanager's judgment and courage—and the team's courage—to follow it.

In this particular situation on IE4,1 chose to do nothing. After a sleepless night, I decided
I'd rather manage the pressissues if and when they occurred (whichwould consume my
time, not the programmers') instead of investingin insurance against something that
hadn't happened yet. I wasn't happy about it, but I felt it was the best choice for the

project. The team had agreed early on that it was my decision to make, so we moved on.7

Good decisions can have bad results

Our hindsight into past events has been unfair to many good decision makers. Simply
because things didn't work out in a particular way doesn't mean they didn't make a good
choice with the information available. It's impossible to cover every possibilitywhen
dealing with complex, difficult decisions (although some people will try). The more time
you spend trying to cover every contingency, a common habit of micromanagers, the less

Was I right? The day after my decision, our lead developer, Chee Chew, did the work on his
own. Without telling anyone he got the balance of work done, onhisowntime. The original five-
day estimate was by someone with lessexperience.Bychance, I showed up at his officethe next
day and found a surprise. He smiled at me as he showed me the version of the browser with his
changes. I was speechless.

170 CHAPTER EIGHT

time you'll have to spend on the probable outcomes. There's little sense in worrying

about getting struck by lightning if you have a heart condition, eat poorly, and consider

typing really fast as a form of exercise.

Simply because part of a project fails doesn't necessarily mean a bad decision was made.

It's common for things to happen beyond the control of the project manager, the team, or

the organization. Many things are impossible to predict, or even if predicted, impossible

to be accounted for. It's unfair to hold decision makers accountable for things they

couldn't possibly have known or done anything about. Yet, in many organizations, this is

exactly what happens. If a team loses a close game, public opinion tends not to credit the

hard work and heroic effort of the players who got the losing team even that far. Blame

should be wielded carefully around decision making. Courageous decision makers will

tend to fail visibly more often than those who always make safe and cautious choices. If

you want courageous decision makers, there needs to be some kind of support for them

to make big bets and to help them recover when they fail.

Project managers are definitely responsible for the fate of the project. I'm not suggesting

they should be patted on the back for imploding a team. It's just that care should be

taken not to blame a PM for making a good decision that turned out to have a bad

outcome. If his logic and thought process were sound before the decision was made, then

even in hindsight, his logic and thought process are still just as sound after the decision

was made. The state of the world at the moment a decision occurs doesn't change later

on simply because we know more now than we did then. If there was something the PM

and the team didn't know, or couldn't see, despite their diligence in trying to know and

see those things, they shouldn't be roasted for it. Instead, the team should be thinking

about how collectively they might have been able to capture the data and knowledge that

they missed and apply that to the next decisions they have to make.

Paying attention and looking back
To improve decision-making skills, two things need to happen. First, you have to make

decisions that challenge you and force you to work hard. If you never make decisions

that you find difficult, and if you are rarely wrong, it's time to ask your boss for more

responsibility. Second, you have to pay attention to the outcomes of your decisions and

evaluate, with the help of others involved, if you could have done anything differently to

improve the quality of the outcome. Experience benefits only those who take the time to

learn from it.

In training and in real missions, fighter pilots meet in debriefing sessions to review what

took place. These sessions are led by senior and experienced staff. The central theme is

that the only way to develop and learn about something as complex as being a fighter

pilot is to review missions, correlate with everyone involved regarding what happened

HOW TO MAKE GOOD DECISIONS 171

and why, and see if there were any ways to improve the outcome. These discussions

often include analysis of strategy and tactics and an exchange of ideasand opinionsfor
alternative ways to deal with the same situation.

The medical communitydoessomething similar in what are called M&M or morbidity
and mortality sessions (jokingly referred to as D&D, death and doughnuts), though these
are typically done only for fatal casesor where something particularly novel or complex
was done.

In both cases, it's up to the leaders of the session to avoid making the session a trial or to

embarrass people for their mistakes. The goal should be to make them feel comfortable

enough with what happened that they are willingto spend time reviewing and re
evaluating what occurred, so they learn something from it, and give others in the

organization a chance to benefit from the costs of whatever took place.

Here's my rough list of questions for reviewing decisions. When I'm called in to help

teams evaluate previous work, this is the decision-making framework I start with. This

works best as a group activity (becauseyou'll benefit from different perspectives),but it
also functions for reviewing your own thinking.

• Did the decision resolve the core issue? This should be part of the decision
making process itself. Even if you make the right call, the difference is how well the
team executes the decision. Two hours, one day, two days after a decision, the deci

sion maker needs to check in and ensure the decision is being carried out. Those first
few hours or days are when unforeseen problems arise.

• Was there better logic or information that could have accelerated the deci

sion? Where was time spent in making the decision?Was there any knowledge or
advice you could have had that would have accelerated the process of finding or
exploring alternatives? What research tools were used? Did anyone go to the library?
The bookstore? Search the Web? Call a consultant or expert? Why weren't these
sourced used?

• Did the vision, specification, or requirements help? Good project-level decisions
should contribute to lower-level decisions. Did this decision reveal a weakness or

oversight in the vision? Was the vision/spec/requirement updated after the decision
was made to eliminate the oversight?

• Did the decision help the project progress? Sometimes making a bad decision
moves the project forward. Decisions catalyze people. By making a quick decision to
go east, and changing the perspective, it might become crystal clear that the right
direction is actually north. But until the team started moving east, they might never
have figured that out. In looking back, clarify why the initial decision was successful:

was it because you made the right call or because you made the decision at the right
time?

172 CHAPTER EIGHT

• Were the key people brought into the process and behind the decision? Was
there anyone whosesupportor expertise wasneededthat wasn't involved? Didyou
attempt to contact them and fail, or did you not even try? Wasthere some way to
bringthem in more effectively than you did? (You need to get their opinions on this if
you want an honest perspective.)

• Did the decision prevent or cause other problems? The immediate issue might
have been solved, but were other problems caused? Did morale drop? Was a partner
company or team burned by the decision? What negative side effects did the decision
have, and could they have been avoided? Were they anticipated, or were they a

surprise?

• In hindsight, were the things you were worried about while making the deci
sion the right things? Pressure and paranoia can distort one's sense for which issues
are worthy of attention. In hindsight, you should be able to see the things that were
distorted in importance, by you or others, and ask yourself how it happened. Whose
opinion or influencecontributedto the distortion? Who tried to minimize it but was
ignored?

• Did you have sufficient authority to make the right call? Perhapsyou had an
idea you wanted to run with, but you ditchedit for political reasons. Or maybe you
spent more time fightingfor control over issues, which you felt should have been
under your authority from the beginning. Considerhow power played a role in the
decision and how changes in the distribution of power might have changed how

things went.

• How can what was learned in making this decision be applied elsewhere in
the project? Don't limit lessons learnedto the specifics of the decision. Look at the
next wave of decisions coming to the project (next important date or task), and apply
the lessons to them. Use the new perspective and look out into the future, rather than
only the past. Rememberthe Burmesesaying: "Aman fears the tiger that bit him last,
instead of the tiger that will bite him next."

Summary
• There is an important skill in meta-decision making, or decisions about which deci

sions to invest time in.

• Size up decisions before spending too much time on them.

• Look for the zone of indifference and opportunities for effective use of singular

evaluation.

• Use comparative evaluation for the decisions worthy of more investment.

• All decisions have emotional components to them whether we admit it or not.

• Pros and cons lists are the most flexible method for comparative evaluation. They

make it easy to involve others and get additional perspectives on decisions.

HOW TO MAKE GOOD DECISIONS 173

• Information and data do not make decisionsfor you.

• You improve at decision making by reviewing past decisionsand exploring them for
lessons and opportunities for better tactics.

Exercises

A. Howdid you decide to pickup thisbook? Did you consider alternatives? Howdo you
decide how to decide in everyday life?

B. Think about what you are going to do this weekend. Make a pro/con list for each of
your options. Include a do-nothing choice and at least one hybrid choice.

C. What isa gooddecision you have madein the past that had a bad outcome? Wereyou
blamed for the result anyway? What doesthis tell you about how people perceive
decisions? Should this influence how you make decisions?

D. If data is so easy to manipulate, why are so many meetings in the world focused on
the exchange of unquestionedsurveys and reports? Howcomeit can be easierto point
to someone else's logic to defend a decision, rather than simply explain your own?

E. There is more to a decision than deciding which option to choose. A decision also has
to be communicatedto others, explained sufficiently well to persuade people to agree,
and carried through to successful completion. Which one of these is most difficult for

you? Does it vary from decision to decision? How can evaluating the challenges of a
particular decision increase the odds of its success?

F. Howdid you decide which of the above exercises to read? Tocomplete? Howwillyou
decide if it's worth reading the next one?

G. Who in your life do you debriefyour major lifedecisions with? Why do you pick them
for this important role? Make a list of people you work with, and create a pro/con list
of their value to you in reviewing past decisions.

H. When is it more important to do the right thing than to do what everyone wants you
to do? Is logic or emotion more important in finding courage?

17H CHAPTER EIGHT

CHAPTER NINE

Communication and relationships

o ne of the earliest engineering stories inWestern history is the storyof the Tower of
Babel, from Genesis, and at its core isa lesson aboutcommunication. As the storygoes,
humanity was happily united in the desert. They soon figured out how to make bricks
and mortar. Things were going so well that, for no particularreason, they decided to
builda towerhighinto the sky. Things went along brilliantly until the workers suddenly
lost the ability to use the same language (canyou say "divineintervention"?), at which
point everything literally fell apart. The once-united people were scattered across the

world (more divine intervention), and different languages and societieswere formed. It's

suggested in the story that had they been able to continue to communicate well with

eachother, nothingwouldhavebeen impossible (which isperhaps, as the storyalso sug
gests, what motivated the divine intervention).

Thisbiblicalstory is quite short: barely a page. However, through the centuries, it has

captured the attention of many artistsand writerswho used the story to explore
contemporary issues.The vivid imagesof the tower painted by Brueghel1 and others gave
the story increasingrelevance to engineeringand project management tasks of their
times. The interpretations of the story have shifted from age to age, as have the

depictions of what the Tower actually looked like, but the general themes are the same.

Some believe the story is a warning about humanity's hubris and a reminder that some

things should be unattainable to us. Otherssee it as a story of people strivingto achieve
all they can by pushing the boundaries of what's possible. But for me, and for the sake of

this chapter, the central lesson of the story of Babel is simple: if you can't communicate,
you can't succeed.

For much of the history of civilization, the slowness of communication caused problems.
Even as late as the American Civil War (1861-1865) there were no radios, telegraphs, or
semaphore (flag) systems in common use. Generals sent messagesby horse to coordinate
battle information with commanders at different camps (which, depending on distance,
took hours or days, assuming the messenger didn't get lost). As a result, decisions were

made days in advance with no way to change attack assignments. Many disasters and
frontline miscommunications resulted from these limitations. (Imagine a battlefield

commander who has just sounded the charge, sending all his troops to attack, when an
exhausted messenger stumbles into his tent. The messenger, struggling to catch his

breath, says, "Dispatch from command.... 'Dear commander: The reinforcements you
were depending on were sent elsewhere. Sorry. Goodluck.'" No wonder messengers
were often shot.)

1 Brueghel was a Flemishpainter in the 16th century, famous for his paintings of landscapesand
peasant scenes. You can see his Tower ofBabel painting, and his full biography, at http://en.
wikipedia.org/wiki/Pieter_Brueghel_the_Elder.

176 CHAPTER NINE

Today, communication is still important, but two things have changed. First, speed is no

longer the primary problem (how can you get faster than instant messaging?). Instead,

the problem has become the quality and effectiveness of communication. Second,

communication isn't enough for complex work: there need to be effective relationships

between the people who are working together. Unlike the military command structure of

an army, most software teams rely on peer-to-peer interaction and other, less

hierarchically driven relationships. Although there are often clearly defined leaders, who

sometimes give orders, projects are heavily dependent on the team's ability to make use

of each other's knowledge, to share ideas, and to work in synchronicity (as opposed to

relying on strict lines of authority, rigorous discipline, and the compulsion to follow

orders without question).

Because project managers spend much time communicating with individuals and groups,

they carry more responsibility for effective communication than others on the team. If it's

the health of the social network of a team that prevents it from becoming another Tower

of Babel, it's the project manager who has the most natural role in building up and

maintaining that network.

Doing this doesn't require an extroverted, game-show-host personality; nor does it

demand a brilliant sense of humor or magical powers (although these may help). Instead,

it starts by admitting communication and relationships are critical to success, and there's

room for improvement for yourself and your team. If you admit it's important, you'll

want to understand where most communication problems occur and learn how to deal

with them.

Management through conversation
This sounds strange, but it took me years to understand the value of talking to people in

the workplace. I'd chat and joke around, but rarely confused socializing with the actual

doing of work. My experiences led me to believe I had to solve problems on my own. In

my first year at Microsoft, I'd rarely seek out the opinion of others or find someone who
had more knowledge than I did and reuse it. Instead, I'd grind it out and work hard

instead of smart. At the same time, I watched two of my earliest managers, Ken Dye and

Joe Belfiore, exhibit the curious behavior of spending a great deal of time talking to other

people. I'd see them, sitting in various other people's offices, chatting away. As busy as I
was, I couldn't help but wonder how they could afford to spend so much time

"socializing." Being new, I didn't ask them about it. Instead, I just labeled them

"extroverts," which, at the time, I considered a minor insult. Their behavior annoyed me

(shouldn't they be working at least as hard as I am?), and I didn't see value in what they

were doing. How wrong I was.

COMMUNICATION AND RELATIONSHIPS 177

As my responsibilities grew, I understood what Ken and Joe had been doing. Through

trial and error I learned manhandling, bullying, dictating, or demanding things wasn't an
effective tactic when I needed things from people who weren't obligated to listen. I

noticed similar results in noncommunicative programmers or testers, and they were

ineffective when getting work done that involved other technical people. (This is

significant if you look at Figure 9-1. The implication is everyone can benefit from better

relationships, no matter how isolated their work supposedly is.)

Hono developers spend 4heir4ime

/sind of *)orA Percen4&$e

lOorkin^ a/one 30%

U^orkin^ i*)i4h one oiher person £0%

tOorkin^ tOi4h 4too ormore people d-0%

Quo-fed -from Peopleuare} VeMarco a.nd lister CVorse4 House) /W)
summary of 4he GreraJd McCue s4udy CXBMj /97^).

FIGURE 9 -1. There's evidence programmersare not as solitaryas we think.

I found that the more I demanded things from people ("You need to code it this way,

OK?"), the lower the probability was that I'd get their best work. Even if they did what I

asked, something about my approach killedtheir motivation or minimized the probability
they'd add value beyond what I'd asked for. However, I found that when I conversed

with them ("Hey, I think we need to do X, and I think you're the right person to do it.

What do you think?"), instead of barking orders, I received what I needed sooner than

when I used those other tactics. And, as a bonus, the odds increased of them suggesting
good improvements on my ideas. I learned dialogs are better than monologs.

Relationships enhance communication

Despitehow obvious it is that you need to have a positiverelationship with someone in
order to have a good conversation with him, people are rarely rewarded for their skills in
doing so. Those informal chats and conversations Ken and Joe invested time in were not

a way to kill time. Those conversations were investments in people and information,

giving Ken and Joe knowledge and insight into what was going on that few others had.

But specific to my point: when they neededto requestadvice, an opinion, or a task, they
could talk to almost anyone on the team, at any time, and start from a healthy and
positive place, rather than from scratch. Their relationship with the team accelerated
their ability to communicate with everyone.

178 CHAPTER NINE

This made it easier to cut to the chase without being rude, or even to make exceptional

requests ofpeople that ordinarily would be rejected. In matters ofopinion, they had built
enough trust to get honest opinions from the rightpeople in a casual manner, and, if so
inclined, they could incorporate those suggestions and ideasinto their own thinking well
in advance of larger discussions. Ken and Joe were ahead of the rest of the team. They

knew more about what was going well and what wasn't, and they had more influence on

it through their investment in relationships. They'd paved the way for all kinds of

additional support and benefits, simply by talking and listening to people.

In Tom Peters' and Nancy Austin's classic, APassion forExcellence (Warner Business Books,

1985), this sort of behavior is called management by walking around (MBWA). It's

described as a central quality in the successful managers they observed (an entire chapter

in their book is dedicated to it). But it's not easy to do well. They recommend explicitly

picking a small number of people, at different levels and roles in the team, and investing

time in building this kind of informal relationship with them.2 More importantly, it

requires an understanding of how healthy communication and relationships work and a

commitment to growing those skills. Even if you don't choose an MBWA approach to

build relationships, core communication and interpersonal skills will still be essential to

everything you do.

A basic model of communication

Few people in the workplace have any proficiency in diagnosing communication or

relationship problems, or have the necessary authority to sort them out. However, it is

easy to learn a simple framework for what the goals of communication are—from a

project management perspective—and apply it to daily situations. With this knowledge,

you can break down where things are failing and become more capable of resolving

problems because you'll have a better understanding of what's not working.

"Good communication centers around highly developed individual awareness

and differentiation. A good communicator is aware of both internal processes in

themselves, and external processes in others."

—John Bradshaw

In the simplest framework, there are five basic states that any act of communication can

be in.3 Each is progressively more important and harder to achieve than the previous

As Peters says, " If you are not a regular wanderer [into people's offices], the onset of wandering
will be, in a word, terrifying...." It lakes time to build that kind of rapport with people, espe
cially those who have reason to fear you.

I was unable to find references for this framework. I'd heard the first three, but could not find

a source. Another good framework is the Satir model, which Weinberg uses in his books. See
The SatirModel: FamilyTherapy and Beyond, by Virginia Satir et al. (Science and Behavior Books,
1991). Yes, this is a book on therapy. And yes, if that bothers you, it's exactly the book you need
to read.

COMMUNICATION AND RELATIONSHIPS 179

state. Communication issuccessful only ifit reaches the thirdstate (understanding), ifnot
thefourth (agreement) orfifth (action). To help illustrate each state, I'll use an example
from the film 2001: ASpace Odyssey. Dave, an astronaut, isin a small spacecraft and wants
to getback inside the mother ship. Hal, inside the mother ship, is the only entity capable
of opening the doors to let him in.

1. Transmitted. When yousend an email or leave a voice mail, youare transmitting a
piece ofinformation to someone. This doesn't meanshehas reador heardit, it just
means the message has left your hands with the intent to arrive in hers. With email

and the Web, it's very easy to transmit information, but there isno guarantee anyone
isever going to read it.Example: Dave says, "Do you read meHal?" (Dave hears only
silence in response.)

2. Received. When someone checks his email or signs for a FedEx envelope, the
message hasbeen received. However, reception doesn'tmean the message wasopened
or that the recipient has any intention of reading it or spending any time trying to
figure it out. While read receipts for email do tell youit was opened, nothing else is
confirmed. Example:Hal responds, "Dave, I read you." (The transmission is received
and acknowledged.)

3. Understood. Digesting andinterpreting a message's information correctly isa big
jump in effortfrom simply receiving a message. Actual cognitive activity has to take
place in orderto understand something ("What does thismean?"), whereas receiving
it does not require that same activity ("Hey, I gotsome email!"). Understanding a
messagemay require time. Often, the recipient needs to ask questions to clarifythe
original message. (This complicates the simple five-stage framework, creating a tree of
simultaneous nestedcommunications as eachquestion, and each response, startsits
own sequence of transmission, reception, understanding, etc.) Dave asks "Hal, open
the pod bay door." And Hal responds, "I'm sorry Dave, I'm afraid I can't do that." Hal
understands, but doesn't agree.

4. Agreed. Understanding something doesn't mean a person agrees withit. I might fully
comprehend every aspect of a request from an executive, a day before final release, to
do a Linux port ofour Mac-only video-editing program, but that hasno bearing on
how insaneI think the ideais. Achieving agreement betweentwo intelligent,
opinionated people can be a complex and time-consuming activity, especially if the
objections aren't stated clearly. Despite how difficult it is, agreement is the basisfor
making decisions that impact a team.4 Dave says, "Whatare you talking about Hal?"
and Hal responds, "This mission is too important forme to allowyou to jeopardize it."
Dave is unable to get agreement from Hal, and the door stays closed.

4 Sometimesagreement can be as simpleas decidingwhich person gets to make a certain decision.
Instead of debatingthe issue, debatewho shoulddecide the issue. See Chapter 8.

180 CHAPTER NINE

5. Converted to useful action. Despite how much energy it can take to understand
something properly and perhaps reach a level of agreement on it, significantly more
energy is required to get someone to do something about it. Even if the message
explicitly called for the receiver to take action, there's often no strict obligation on her
part to do so. Perhaps she assumes it's OK to meet the request next week or next
month (when you need it done in the next 10 minutes). And perhaps, worst of all, it's
entirely possible an action is taken but it's the wrong action, or it is an action the
sender of the message doesn't agree with. Even if Dave had convinced Hal he should
open the door, until he does it or agrees to when it will happen, Dave is still helpless

in space.

Good communicators think about how deep into this five-step model they need to go to

be effective, and they craft communication to make that possible. They use language and

examples that will make sense to the recipient, instead of just using what is convenient

for them. More so, in the message they clarify what the likely points of argument are and

identify what action they want the recipient to take in response.

So, every time you receive or send an email, or stop in at someone's office to ask him

something, there is a natural progression of communication taking place. Use this

framework to help you diagnose why what you want to have happen isn't happening.

Common communication problems
There are a handful of reasons why communication breaks down. In many teams, these

behaviors exist because the group manager either exhibits them herself or tolerates them

in others. Until someone with some authority steps in, identifies the problem as a

communication issue, and takes at least partial responsibility for helping to sort it out,

those bad communication habits will continue.

This short list covers many of the common communication problems, briefly describes

why they occur, and offers some simple advice for avoiding or recovering from them.

• Assumption. When you walk into someone's office and ask him why he hasn't sent
out that important email yet, you're assuming: a) he knew he was supposed to send it;
b) he knew when he was supposed to send it; c) he understood what was supposed to
be in it; and d) he was supposed to notify you somehow when he did it. Before yell

ing at this person (let's call him Sam) or blaming him, good communication involves
clarifying these assumptions. "Sam, did you send that email yet?" Sam replies, "What
email?" "Sam, remember yesterday we spoke in the hall and you confirmed you could

do this?" "Oh yes, I sent it a few minutes ago." Good communicators habitually clarify
assumptions during discussions at key points, such as when commitments are made,
and confirm them again before the deadline.

COMMUNICATION AND RELATIONSHIPS 181

Lack of clarity. There is no law in the universe claiming others will understand what
you're saying simply because you understand it yourself. No matter how eloquent you
may be, if the other person doesn't understand you, you're not eloquent enough for
the situation at hand (asRedAuerbach said, "It's not what you say, it's what they
hear"). The natural remedy is to step back, slow down, and break down ideas into

smaller and smallerpiecesuntil a point of clarityis reached, and then slowlybuild up
from it. Find a story or analogy to give a rough framework that people can follow, and
add detail to it until you don't need the analogy anymore.

Not listening. In the movie Fight Club, the main character, Jack, says in reference to
one of the many support groups he's recently joined, "They actually listen to me,
instead of just waiting for their next chance to talk." We are compulsively bad listen
ers, and we tend to prefer the sound of our voices to others. Worse, even while peo
ple are speaking to us, we are often calculatingour next response—continuing our
original argument—instead of listening to their point. (The extreme form of this prob
lem is simplynot paying attention, as in reading your email while someone is talking
to you. Despite doubtful claims of multitasking proficiency, it still sends a negative
message to the person who's talking to you: "Youare not worthy of eye contact.") The
remedy is to accept the possibility that they know something you don't. Your goal is
not to force them into a position, but instead to achieve the best possible outcome for
the project.

Dictation. The evil twin of not listening is dictating. Instead of giving even the pre
tense of listening, people who dictate simply give orders. Any objections to the order
are rejected or responded to with derision, as if it should be obvious why the order is
being given without explanation ("What are you, stupid?"). This is not an act of com
munication because it's a violation of the framework covered previously: no attempt is
made to reach understanding. Giving orders should be the exception. Instead, strive to
make decisions in an environment where people have the right to ask good questions
and propose challenges to your logic.

Problem mismatch. Communication can mask many other problems. It's only when
we communicate with someone that they have a chance to surface their feelings about
other issues. What comes back in response to a request may be an expression of feel
ings that have nothing to do with the specific request ("Hey, can you read this spec?"
"No! Never! Death first!"). There might be an unresolved issue about another decision

that he hasn't expressed yet. If neither party recognizes there are different issues being
discussed under the guise of a single issue, the discussion will be difficult to resolve.

Someone has to separate them: "Wait, what are we really talking about here? How to
code this feature, or why you didn't get that promotion you wanted?"

Personal/ad hominem attacks. Situations become personal when one party shifts
the discussion away from the issue and toward an individual. This is called ad hom

inem (against the person). For example, Fred might say he doesn't have time, to which

Sam replies, "That's the problem with you. How come you never have time for

182 CHAPTER NINE

reviewing test plans?" This is unfair to Fred because he has to defend not only his
opinion, but also his personal behavior. Personal attacks are cheap shots.5 Often, the
person taking the cheap shot feels vulnerable and sees the attack as the only way to
win the argument. It's up to a more mature person (or perhaps Fred himself) to inter

vene and separate the issues.

• Derision, ridicule, and blame. When a person has a new idea, she is making her

self vulnerable to whomever she chooses to share it with. It requires a feeling of trust

to be forthcoming and honest. If she is consistently ridiculed or demeaned in the pro

cess of communicating important but unpleasant information, she will stop doing it.

The first response to a problem shouldn't be "How could you let this happen?", or

"You know this is entirely your fault, don't you?"

There are other problems that arise in communication, but this basic list covers many of

the possible situations. The more people involved, the harder it is to isolate what the

problem is and fix it. Sometimes group discussions are the wrong place to solve

communication issues because there are too many people and conflicts involved to

resolve any problem effectively. Group communication is an issue I'll touch on briefly in

Chapter 10, but for most of this chapter, I'll focus on simpler situations.

A simple tactic for making the previous list actionable is to share it with people on your

team, and ask them to identify when someone is behaving in a problematic way. The

team will now have a language for the problems they see, making it easier to resolve

them. Specific to team leaders, a commitment should be made to re-examine their own

behavior and pay more attention to what they're doing and saying. Odds are high they'll

identify habits that need to be worked on. (Change of any kind is tough. Organizational

change requires those in power to take action. See Chapter 16.)

However, no matter how much you read or study about human psychology and

communication, it's always subjective. There's no mathematical formula you can use, or

detection device you can buy, to help you recognize when you're about to cause a

communication problem. The same applies to making others aware of communication

problems they are causing. It's sensitive and complicated, and some people have years of

experience with bad communication habits that they're unwilling to give up simply

because you suggest they should. This is one of the many reasons why project

management is a tough role: you have to invest in relationships with people, regardless of

how much they're investing in you.

5 A comprehensive list of conversational cheap shots, conveniently categorized and listed with
examples, can be found at http://www.vandruff.com/art_converse.html. Please, please, please do not
use this as a playbook to follow.

COMMUNICATION AND RELATIONSHIPS 183

Projects depend on relationships
Project managers are only as good as their relationships with the people on the team. No

matter how brilliant the PM is, his value is determined by how well he can apply his

brilliance to the project through other people. This doesn't mean micromanaging them or

doing everything, instead it's about seeing the PM role as amplifying the value of other in

any way possible.

The challenge is how. Every time I've given a lecture on project management and

convinced a group of this point, someone invariably raises her hand and asks: "I

understand it's something I should do, but how do I go about amplifying their value

without annoying the crap out of them?" This is a fair question. Few people come to

work wanting to be amplified or to have some person they might not like involved in

their daily business. The answer is relationships: depending on the person you're dealing

with and what expectations have been set, your approach must be different.

Defining roles
"The cause of almost all relationship difficulties is rooted in conflicting or

ambiguous expectations around roles and goals."

—Stephen Covey, author o/The 7 Habitsof Highly Effective People

In the previous list of communication problems, one important issue is assumptions and

how to clarify them. Leadership roles are the most ambiguous and prone to assumptions

by others. Any programmer or tester will always carry the first experience he had with a

PM (bad or good) as his model when working with all future PMs. The first time you

walk in the door, the new team sees you as a projection of all of their previous

experiences with PMs. They will assume different things than you will about what you

can do and what value you might add to the team. No matter how well defined you think

the job descriptions are where you work, there's always plenty of room for bad

assumptions.

The easiest remedy is to clarify roles with any important person you know you will be

working with: programmers, testers, marketers, clients, or even executives. Sit down

with one person you work with and make three lists on the whiteboard. The first list is

things you are primarily responsible for. The second list is things both of you share

responsibility for. And the third list is things the other person is primarily responsible for.

As you work together to make the lists and discuss which items belong where, you will

quickly recognize what expectations you have of each other (see Figure 9-2). Role

definition flushes out all of the assumptions and baggage people have about what project

managers, general managers, developers, testers, or anyone else is supposed to do.

18H CHAPTER NINE

U)ha.4 4he PM does U)ha.4 toe ho4h do U)/)a4 4he pro^ummer does

• njri4e specs - 4ri<t^e incoming bu^s - K>ri4e code
• mcLna-^e c/ien4s - discuss 4ra.deoffs 4ho.4 - drive build process
• manage executives impa.c4 dev cos4 &design - ujork to/tes4 on builds
•4ro.ck proffess - toarn ea.ch o4her of risks - revie*) check!ns
• lead team communication orproblems - revietospecs

- help each o4herproblem
solve or brainstorm

FIGURE 9 - 2. Role-definition discussions help every relationship (this isjust an example—your lists may

look different).

At a minimum, you'll identify the places where you disagree, and, even if you don't

resolve them all, you'll be aware of potential problems and can work more sensitively on

those tasks. Often the role discussion will reveal how dependent both parties are on each

other to be successful. But perhaps most important is that this discussion provides a

framework both parties can use for relationship problems in the future. The ice has been

broken, and it's now easier to talk about roles, collaboration, and responsibility. Should

there be a problem later, all someone has to do is pull out the list and point to where

something isn't working out as it should have.

The fear in having these discussions is about control. When you write down something

important and offer it for discussion, you're vulnerable to having it taken away from you

(or so the fear goes). But as far as the PM is concerned, typically the things of greatest

interest (high-level decision making, cross-discipline work, strategy) are the last things

more specialized people want responsibility for. In fact, often there is ignorance among

the team about what the PM does all day, and without discussing roles, they have no way

of ever discovering what the PM is doing.

In the worst case, where there are huge gaps in perceived roles ("I don't care what your

last PM did, I will not do your laundry"), it's time to talk to your boss and possibly the

manager of the person you spoke with. There's no cause for alarm: the framework you

used is the easiest way to bring the discussion to others and work toward a resolution. On

larger teams, I've sometimes started this discussion with the manager of the programming

team first, got his buy-in, and then worked my way down to line-level programmers.

This makes sense if you think the PM's support is necessary up front, or if you have a

better shared understanding of roles with him than you do with some of the line-level

programmers.

COMMUNICATION AND RELATIONSHIPS 185

The best work attitude

An unspoken assumption is that people are working hard and trying to do their best

work. But because there's no way to measure how hard people work,6 or what their best

work looks like, managers rarely spend time talking about it. This is a mistake.

It should be entirely natural and acceptable for a PM to ask anyone the following

question: "What can I do to help you do your best work?" No preface is needed, nor any

caveats about what you might not be willing to do. Just by asking this simple question,

three positive things happen:

1. You establish the possibility that the person you are talking to is capable of doing her
best work on the current project, and that perhaps there is something preventing her
from doing so.

2. You put her in a framework of evaluating her own performance and identifying things
she can do that might make a difference.

3. You make it possible to have a discussion about what both of you can do to improve
the quality of the work being done. By framing the discussion around "best," you
dodge the possibility that she feels criticized or that her current work isn't good
enough.

This approach has nothing to do with trying to make people like you. Getting the best

performance possible out of the team is a direct responsibility of the PM. Figuring out

how to make people more effective is not simply doing them a favor, it's improving the

quality and speed of the work done on the project. Of course, for a project to succeed, it

might not require everyone's best work, but so what. If their pursuit of a higher standard

doesn't hurt the project—and it clearly improves their own morale and personal

investment in the team—then it's worth the cost of asking a few simple questions.

Sometimes when you ask people how to get their best work, the answer might be "Leave

me alone," or "Stop asking me silly questions," or other less-than-useful responses. Even

if they don't seem receptive, they will be thinking about your question, whether they

admit it or not. I've had programmers shrug off my initial question ("No, Scott, there's

nothing you can do"), and then come back to me a week later and make a great

suggestion that ended up helping the whole development team. Plus, they thanked me

for respecting them enough to ask their opinion.

The underlying attitude implied is that when a programmer is falling behind, the PM's

job is not to assign blame and yell at him to work faster. Instead, it's to help him to

understand the problem and contribute time to help resolve it. Asking about his best

6 Every measure of work has its problems. Lines of code imply quantity, not quality. Hours imply
length of work, not intensity.

186 CHAPTER NINE

work is an easy way to establish a supporting relationship with him. Even if there are

other demands on the PM's time, it's often best to prioritize assisting direct contributors

to the project ahead of secondary political or bureaucratic matters. The former will always

have a direct impact on the project schedule, but the latter may not.

How to get people's best work

Great leaders rarely force people to do anything. Instead, they use every other means in

their power to convince people to do things. Everybody has different strengths and

weaknesses when it comes to motivating others, and it follows that better leaders tend to

have a wider range of tools to use and more command over them.

Something I've seen in weaker managers and leaders is the over-reliance on one

approach or method to try to get the best work out of people. If that one method doesn't

work, they give up, claiming that there's nothing that can be done. Sadly, not much

happens when the team leader claims there are no alternatives. Instead, when stuck,

there's probably another angle to take that might work. It's possible that you're capable

of trying another tactic, but also consider that someone else on the team might be able to

help by lending a talent to the situation that you don't have.

• Follow advice. Listening to suggestions is one thing, but doing something about it is

another. When they ask for more time for certain tasks, make it happen. If they sug

gest that there are too many meetings, let them suggest ways to shorten them. Invest

real energy in following through on what they need. Even if it doesn't pan out, if you

take the challenge of fulfilling requests seriously, they'll notice. People can spot real

managerial effort from miles away (they have lifetimes of experience observing token,

lip-service effort).

• Challenging/making demands. The most obvious way for a person in authority to

get work out of people is to demand it: "40 push-ups, now!" The more intelligent the

people you work with are, the less likely this approach will work. If the vision is good,

the work is interesting, and people get along, there's little need to demand anything.

Motivation should come naturally. When you need to light fires, find clever ways.

Place friendly wagers: "If we make this date, I'll dye my hair blue" or "Whichever

team of programmers fixes all the bugs first will get an afternoon BBQ on my boat."7

Demands have their place, but don't get mean, get honest. "Look, this needs to be

done. It's too late to debate this, and I'm sorry if I wasn't clear before. Please, just

deliver on this for me. OK?"

• Inspiring. It's difficult to fake inspiration. Either you believe in what you're doing, or

you don't. If you do believe, you have to find some way to express it in a positive

manner so that other people can feed off of it. "Look. I love this project. We are paid

7 The clever, but sneaky, thing to do is to plan on inviting both teams, regardless of who wins.
But don't tell them that until the competition is over.

COMMUNICATION AND RELATIONSHIPS 187

to learn new technologies and figure out how to apply them. That's rare, and it gets

me to come here every day." It doesn't have to be elaborate or eloquent. If it's honest,

it works. Human nature reciprocates positive emotion, and when you bring some

thing real out, you invite others to follow. More direct methods include asking people

what they like about writing code and helping them to make connections between

those feelings and the work they have in front of them.

Clearing roadblocks. Every great running back in American football had an unsung

hero who paved the way for him. That unsung hero is called the blocker (aka full

back) . He runs out in front of the running back and knocks over the first guy who tries

to tackle the running back (usually someone much larger than he is). If you look care

fully at any highlight reel where someone runs for 70 yards, you'll see another guy

lying flat on the ground, buried under various large people, who made the play possi

ble. Good PMs make plays possible. They eliminate issues that are slowing down the

team. Ask people: "Are you blocked by anything?" If they say they are waiting for a

decision, or trying to track down information, it's your job to figure out if there's any

way you can accelerate that process. They should know you are available to help if

they ever feel blocked.

Remind them of your respective roles. The most frequent way to enable best

work is to remind people of their roles. When a programmer complains that she is get

ting too many new-feature requests, the response should be that it's probably not her

job to field requests: she should direct people to you (the PM). She's free to involve

herself if she feels it's appropriate, but if it's late in the schedule, she should be using

the PM to run interference. Sometimes people, especially programmers, are so focused

on the work itself that they lose sight of the testers, designers, and managers around

them who are often better suited to drive certain kinds of tasks than they are.

Remind them of the project goals. As the PM or leader, you have more perspec

tive on the project than any individual. It's easy for people to get lost in the complex

ity of their narrower areas of responsibility and lose track of what issues are truly

important. A short conversation with you, where you refresh their understanding of

what they're really accomplishing and why, can restore their focus, motivation, and

effectiveness. Like the landing lights that identify an airport runway at night, making

it easy for pilots to spot their way to safety, good PMs light the way.

Teaching. If you have a skill or trick that people you work with can make use of, why

not offer to teach it to them? Giving them a new skill or a tip for using an old one

doubles the value of that knowledge. By teaching, you make it possible for people to

get more work done faster and improve the chances of them doing good work, as well

as possibly improving the quality of what their best work is. If instead of waiting for

you to do a basic task, you can teach your team to do it themselves, everyone wins.

Asking. It seems obvious, but it's rarely done. Simply ask them for their best work.

You don't need to explain why, or even necessarily offer anything in return. Just say,

"Hey, I'd love to see your best work here. This work is important and if you have

more to give, I'd like you to give it now."

188 CHAPTER NINE

The motivation to help others do their best

Early on in my time with the Windows team, I remember feeling like I spent all my time

helping other people do their jobs. I was a relatively new manager (as in having direct

reports), and after running around helping people put out fires and giving advice, I just

wanted to be alone. I tried going to my office and closing the door, but people kept

coming by. My voice mail light wouldn't stop blinking, and I didn't even want to look at

the email that had accumulated while I was running around the building. I remember

questioning why I spent so much time in other people's offices, and it took me awhile to

come up with an answer I believed. But I found one, and here it is.

Those conversations were not ethereal or anecdotal things. In each of those

conversations, I was doing something directly related to the goals of the project. This goes

beyond the abstract importance of good relationships. Every time I answered a question

at my door, negotiated with another organization, or argued for resources for my team, I

was doing as much as any developer or tester to move the project forward. I was enabling

them to write code, find bugs, and do 1,000 other things faster or easier than they would

have otherwise.

My point is that if you carefully examine the conversations you have with people, and

consider their impact on the project, you'll generally find every conversation contributes

to one of the following things:

• Improves the quality of what's being made

• Increases the chances it will be finished on time

• Helps make the product/web site/software more useful for people

• Increases the chances the product/web site/software will generate profit or traffic

• Protects people from needless work, stupid politics, or bureaucracy

• Makes what's built easier to maintain

• Increases the morale or happiness of the people on the team

• Helps the team to work smarter and faster, and to apply (and learn) new skills

• Eliminates or clarifies behavior that is detrimental to the project or the team

So, even when you tire of clearing roadblocks, answering questions, or checking in with

various people for different reasons, remember that the effort you put into those things is

not wasted. As long as you can connect those discussions, pep talks, fire drills, arguments,

and discussions back to positive trends in the project (or the prevention of negative ones),

they're essential to moving the project forward. You're doing work, however

unglamorous or unrewarded, that no one else can do as effectively as you can. However,

if you find that you can't tie those actions back to important things, stop doing them.

Prioritize your time and relationships so that your energy has the greatest positive impact.

COMMUNICATION AND RELATIONSHIPS 189

Summary
• Projects happen only through communication. In modern times, speed isn't the com

munication bottleneck, quality is.

• Relationships enhance and accelerate communication.

• There are several frameworks for how people communicate with each other. PMs

should be familiar with them so that they can diagnose and resolve communication

breakdowns.

• There are several common communication problems, including assumptions, lack of

clarity, not listening, dictation, personal attacks, and blame.

• Role definition is the easiest way to improve relationships.

• Ask people what they need in order to do their best work. Ways to do this include: lis

tening, clearing roadblocks, teaching, and reminding them of goals.

• Relationships and communication are not low-priority work. They are essential to all

of the individual activities that take place during a project.

Exercises

A. Block off a half-hour on your schedule every Wednesday afternoon. Use it exclusively
to walk your team's hallway and talk to the individuals working on your project. Ask

what they're working on, how things are going, and if there's anything you can do to

help them. If your team is virtual, use that half-hour to catch up on any

communication you're behind on with them. After a month, ask yourself if it

improved your relationships with anyone? If yes, continue; if not, find a better use for

that half-hour.

B. You learn your project is dependent on the successful completion of Project X. Project
X is being postponed so that the team can be redirected to work on Project Y, a project
you do not care about. Write a plea to Project X's sponsor to convince him to keep
Project X on track.

C. You are the project manager on a high-risk project. For the last several report periods,

you've included a graph that illustrates the dwindling budget. You've even drawn

attention to it in your periodic conference calls, but you've heard only indifference

from the project's sponsor. A week from being bankrupt, you confront the sponsor

directly and ask when you can expect additional funds. The sponsor is incredulous and

asks why he wasn't notified before. How could you have communicated the situation

and call to action more effectively?

D. Your manager interrupts a status meeting to announce your team will discard the

current design and pursue a different one. She describes a solution she saw on a

television show. Given your understanding of the project sponsor's requirements, you

feel the current design is superior and also cost-effective. How can you convince your
manager to rescind her announcement?

190 CHAPTER NINF

E. Next time you are in an argument with a friend, significant other, or coworker, think

about the five-step model of communication every time you open your mouth. Are

you acknowledging what they are saying? Are you taking time to make sure they

understand what you are saying? Write the five steps down on a piece of paper and

keep it with you.

F. You're halfway through a project and learn the team is behind schedule. You learn the

lead programmer is a friend of the project client and has been entertaining change

orders after work at a local bistro. The programmer has clout with the development

team, and the client has clout with your supervisor. What action do you take?

G. Make two ordered lists, one of the most important people on your team, the other of

the best relationships you have with people on your team. Look at the two lists for

opportunities for improving relationships: if you could improve a relationship by 25%,

which one would have the greatest impact on the project?

H. Turn the list of common communication problems into a poster, and place it

prominently on the wall in the main conference room for your team. Invite your team

to use it to point out when you're communicating poorly.

I. When do you decide to do your best work? Can someone else motivate you to do it,

or do you have to motivate yourself? What does this tell you about how to motivate

others to do their best work?

COMMUNICATION AND RELATIONSHIPS 191

\K- ,Mmm

CHAPTER TEN

How not to annoy people:
process, email, and meetings

B ureaucracy (n): An administrative system in which the need to follow rigid or complex

procedures impedes effective action.

The larger your team, the greater the odds are that your project management activities

will annoy someone. Anytime you track someone else's work, or make decisions that

impact others, you will potentially annoy them; it comes with the territory. If you're

smart, you'll look for ways to minimize annoyances. They'll be happier, the project will

run better, and you'll get fewer dirty looks from people in the hallway.

The three activities with the greatest odds of annoying people are email, meetings, and

team processes (i.e., build or spec procedures). This chapter will run through the

common mistakes and basic approaches for performing these tasks with a minimal

annoyance risk factor (aka MARF).

A summary of why people get annoyed
Because I couldn't find a published history of annoyance, I'm relying on my own

observations in summarizing why people get annoyed. I have a fair amount of experience

in this area: I've been annoyed many times, have witnessed other people in a state of

annoyance, and have been known to, on occasion, annoy others.

For the full effect in understanding these examples, they are described in the first person

(it may help to think of a specific person you have experience working with, who you

respect, when reading through these).

• Assume I'm an idiot. If I have been hired to do X, which I am capable of doing, any

time someone treats me as if I cannot do X—or need a 20-step procedure, rulebook

form, template, daily evaluation, committee, or other process to enable me to do X—I

will be justifiably annoyed. Part of my job should be to help define my work in a way

that satisfies whatever objectives management decrees. But until I fail and prove

incompetence, I should be treated as competent. I should be free to define, within rea

son, the best way to get my work done.

• Don't trust me. If, on a daily basis, I am expected to check in, double check, triple

check, and report on decisions that are well within the range of my responsibilities, I

will be annoyed. If I must confirm everything, what authority do I really have? Why

does everything need to be documented and recorded if I'm doing a good job? Even if

I'm not initially trustworthy for some reason, it should be management's job to pro

vide a fair path for me to earn trust and to progress along that path.

• Waste my time. If the way the team functions forces me to repeat (tedious) tasks

many times, or go far out of my way to protect against contingencies and manage

ment paranoias that are comically unlikely and insignificant, I will be annoyed. This

191 CHAPTER TEN

includes flip-flopping on important decisions or being grossly inconsistent in messag

ing or behavior without making any attempt to explain it (or at least apologize for it),

even when asked.

• Manage me without respect. If I am ever sent on a wild goose chase, given assign

ments that have no basis in reality, or set up to fail and take the blame for things

beyond my scope of responsibility, I will be annoyed. Someone should be looking out

for me and making sure my efforts align with the project's, guiding me toward suc

cess. Therefore, my requests for assistance should be taken seriously and not be exces

sively delayed or ignored.

• Make me listen to or read stupid things. Anytime I am required to listen to some

one else or read something another person has written that has no meaningful bear

ing on the work we are doing, I will be annoyed. We have a triage bar for bug

quality—why not one for stupidity? Just because someone calls a meeting, writes a

paper, or sends an email doesn't mean it's worth my time. The more secondary or ter

tiary things are that I'm asked (or forced) to do, the less productive and happy I am.

Most of these reasons for annoyance explain why many people loathe the idea of work

processes. They fear that any attempt to systematize their work can result only in

bureaucracy or other forms of suffering. I think the fear is unfounded. People design

processes, just like everything else, and if the designer is smart and has the right goals in

mind, the processes can benefit everyone. Process can help people instead of restricting

and annoying them.

The effects of good process
I define a process as any repeatable set of actions a team decides to perform on a regular

basis to make sure something is done in a certain way. Processes go by many names:

rules, guidelines, forms, procedures, or restrictions. (For example, how code gets checked

in, tested, and built is a common example of an engineering process. Others include spec

writing and managing calendars and schedules, etc.) A good process improves the odds of

the project being completed and has benefits that outweigh its costs. However, because

time is rarely spent considering why certain processes exist, or what problems they

(should) solve, many teams live with lots of processes, without the benefits they can

provide.

Sometimes the problem is who's in power. Any idiot with power can come up with the

most mind-numbingly idiotic system for doing something and force the team to follow it.

Then, when the team manages not only to survive that process but actually ship

something, the person in power may even point to the process as a contributor to the

success (blind to the fact that the team was successful in spite of the stupid process). If he

has enough power, he can quell any mutinies and continue torturing the team by adding

even more procedures.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 195

Other times, the problem is the philosophy: "X worked before, so let's do X." In this

situation, a team leader who has done something a certain way in the past insists on

inflicting that method or process on every new team he leads (this bad management

habit is mentioned in Chapter 8). This is bad because prior success with X is relevant only

if the current situation is similar to past situations. The real acceptance test for a process

should emphasize the needs of the present over observations about the past.

But often the problem is the complexities of creating processes. A process tries to organize

how people work and how they interact, two critically important but very organic things.

People work differently—they have different preferences and tolerances for formal

controls. If the person creating the process isn't careful, the process can easily become a

bottleneck, slowing people down and constricting their (sense of) freedom and

empowerment.

The trick in creating good processes is to understand two things: what makes projects and

teams successful in general, and what makes the current project and team different from

others (see Figure 10-1). It's not enough to know how, say, good team decisions are

made in general: you have to account for the culture, personality, and habits of the

current team you're working with. Sometimes, the culture or the project demands a

different approach (e.g., decisions for car antilock-brake-embedded systems versus

decisions for Steve's punk rock band's web site). Instead of regulating from above, it's

often best to let the team self-regulate. Instead of reusing the standard template, let them

modify and create their own. Much like any kind of negotiation (see Chapter 11), when

it comes to process, you have to be clear on the interests you care about and not the

specific positions.

Grood processes found here.

FIGURE 10-1. Good process requires having a sense for projects in general, as well as the unique

attributes ofthe current project.

To help you both find and recognize good processes, here is a list of attributes and the

effects they'll have on the project. This can be used as a checklist when sitting down to

create or refine a process.

196 CHAPTER TEN

They accelerate progress. As counterintuitive as this seems, good procedures make

people more efficient. For example, the white lane separators on American highways

restrict where you can drive. But because they provide the same restriction for every

one, individual drivers can go very fast. Good process provides a system that people

can depend and base decisions on. In some cases, the process defines roles that people

will play, which makes it easy for Steve to get what he needs from Molly (e.g., finding

someone to do a code review). A canonical example is automated build tools that

allow people to build projects with a few keystrokes, provided they follow the pro

gramming conventions defined by the build system.

They prevent problems. The most common motivation for putting a process in place

is to prevent stupidity from happening (again). The challenge is to do this without

simultaneously making progress more difficult, or encouraging new stupidity. This

requires understanding the causes of the problem and what factors are most important

to progress. Ask the question, "What is the least intrusive, least annoying, and least

expensive way to make sure that X, Y, and Z never happen again?" Or, going the other

way, "What problem does this prevent from happening? How serious or likely is that

problem?" If a process doesn't prevent problems or accelerate progress, get rid of it.

They make important actions visible and measurable. Processes for opening

bugs or publishing specs make it easy to track how often those things are done. You

can track their status, the results, and the team-wide trends. For bugs, specs, and tests,

a good process will make it easy to find out the state of the project. This is important

for mid-game and end-game strategies (see Chapters 14 and 15).

They include a process for changing or eliminating the process. Because

projects are changing all the time, a process that is useful one month may not be use

ful the next. The process must have a built-in mechanism for deciding when it needs

to be updated or discontinued. Never assume that a process will go on forever, and

avoid defining jobs around processes for this reason. Someone who identifies his job as

"The guy who runs test pass 5" will defend test pass 5 with his life. Instead, make peo

ple responsible for the effects and results that the process has on the project, not the

process itself.

People impacted by them are in favor of them. People like helpful processes. A

good process will be seen as desirable to those who need it. If you are proposing a new

process that impacts programmers, and your process is valuable to the project, it

should be easy to get them to try it. People should be directly involved in coming up

with new processes they will use. Alternatively, if the people who the proposed pro

cess will impact can enumerate dozens of reasons why the process is a bad idea,

they're probably right.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 197

A formula for good processes

One way to think about process is the value of its positive effects versus the costs of

putting it into place and running it. There's a formula for this that can help. You don't

need to come up with actual numbers for this formula to be useful. I offer it mostly as an

exercise to help you think about the tradeoffs involved in adding engineering processes. If

you don't like exercises or formulas, skip to the next section: you won't miss a beat.

First, consider the costs of the process: the time to design the process (DT), the time for

the team to learn it (LT), the actual time to do work with the process, multiplied by how

often it's done (AT * N). Total costs for any process are:

DT + LT + (AT * N)

Then, consider the benefits of the process: the costs of failures the process avoids (FC),

multiplied by the probability that those failures will occur (FP) without the process

within a given unit of time, multiplied by how many of those units of time are in the

project (T).

Total benefits = (FC * FP) * T

The result is roughly this:

Process value = ((FC * FP) * T) - (DT + LT + (AT * N))

I fully admit there are gross oversimplifications in this formula, but the spirit of it is close

enough to make it interesting. If the result is a high number, there is more value than if it

is a low number. A negative number means that the benefits of the process were

outweighed by the costs.

This formula implies, at first, that it's very easy to create a process that effectively

eliminates a problem. However, the price of doing it may cost more than a lifetime of

living with the threats of that particular problem (i.e., buying a $5,000 security system for

the cookie jar). If you include design and learning time, and recognize that there's only a

probability of failure, cost-benefit works against changing the process.

However, you must consider the lifetime of the benefits: they will often span more than a

single project. More importantly, the probability of the failure occurring over the next

several projects may increase to 100%. The T value in the formula is significant: even if

the probability of a failure (FP) is low, the longer the time interval, the greater the odds

of the failure occurring and the process preventing it having value. (This exposes one of

the major challenges of being a leader: deciding when to pay the tangible short-term costs

for less tangible long-term returns. This challenge comes up all over the place: hiring,

equipment, facilities, training, etc. You reap what you sow; long-term investments are

the only way to get long-term improvements.)

198 CHAPTER TEN

A last note about this formula: the value AT (actual time to use the procedure) is more

important than it might seem. A good process should make things take less time; AT

should have a negative value compared to how work was done without the procedure, if

it's really saving time. This changes the relationship of costs/benefits as it's structured in

the equation. For example, if AT=5 hours, but previously the task took 7, the net value is

2 hours. That means that the task now takes two hours less to do, and the overall value

of the process is much higher.

How to create and roll out processes

When you identify a problem you think can be solved with a process, follow the same

rough procedure I will outline in Chapter 11. (Even though you're not in a crisis, the

basic procedure of executing a short-term plan is similar.) Clearly define the problem

you're trying to solve and the small group of people best able to help solve it. Work as a

small group generating alternative proposals and then pick the most promising one.

Next, identify an isolated low-risk part of the project to pilot this new process on. If

possible, pick individuals who are interested in and receptive to the process change and

involve them in the creation of the process. Agree on what desired effects the process

change should have, and if possible, set up measurements for them. Then, have the

people involved make the change. Set a date in the future to evaluate how effective the

process change has been.

When this evaluation day arrives, meet again with the small group and the people

involved in the pilot. Discuss what happened. If the pilot was a disaster, repeat the

process and do a second small pilot. Otherwise, revise the process based on what you've

learned, and roll it out to a larger group (possibly the entire team). It should be clear to

everyone you ask to use the process what problems you're trying to solve and why

you're convinced the proposed solution will actually help (the evidence and testimonials

you have from the people involved in the pilot should help a ton).

Managing process from below
"Never underestimate the power of stupid people in large groups."

—Todd Blanchard

Sometimes, people with more power than you inflict processes on your team that you

don't agree with. You might simply be outnumbered or without the authority to revise

the process. It happens to the best of us. I know of three ways to deal with this situation.

They don't always work, but they're worth a shot.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 199

Shield your team from the process. Sometimes, you can absorb the process for

your team. If some paperwork needs to be done, do it yourself. This might make you

feel like the team secretary, but if it's only a matter of you burning an afternoon, so

your team doesn't have to, the trade might be worthwhile. In some cases, you will

score many trust points with your team for protecting them against stupid things.

Time cards, expense reports, mandatory (but ridiculous) HR-type meetings, equip

ment requisitions, and other annoying trivia are common examples of easily shielded

processes.

Bet against the process. Rally your team around a counterproposal. Find out what

things the process is trying to prevent or ensure, and guarantee to the powers that be

that your team will meet those goals without the process. Set a certain amount of time

to make an evaluation. If your team fails after that time, you'll agree to adopt the pro

cess. But if they succeed, you'll take the proposal off the table. If nothing else, this

focuses the process discussion on the right issues (what problem are we trying to

solve?), so even if you fail, it will be an improved process. (In rare cases, research into

other similar and successful organizations that don't do whatever the process is, or do

it in a different and less stupid way, can score points and avoid the need for the bet.)

Ignore the process. I have a tendency to ignore distant, ambiguous, bureaucratic,

organizational things that I don't understand. My theory is that by ignoring it, I force

one of two things to happen. Either the person responsible for the thing will contact

me and ask me why I didn't do it, giving me a chance to have a dialog with him about

why I should do it at all; or, if no one asks me why I didn't do it, then it can't possibly

be that important. I'll go about my business, be successful without the thing in ques

tion, and have a good justification should someone ask me one day why I didn't do

that thing ("Oh. Well, we did X just fine without it. Perhaps you can convince me how

Y would have helped?"). This often works best in a new organization because you

have the added excuse of organizational ignorance. Be warned, though: your political

landscape may make it dangerous to ignore bureaucracy.

Non-annoying email
As remedial a subject as it seems, email is the most annoying system people on projects

deal with. Simply as a result of the volume of email we receive, it's easy to feel pressure

to read and respond to new messages as quickly as possible, often sacrificing good reading

and writing skills. Most of us just don't read or write email very well. What's ironic is that

the convenience of email is squandered when we can't understand what the hell the

other person is trying to say, or we can't get her to understand what we're trying to say.

Of most importance to project managers is that email is a primary means of

communication for leaders. In both creating new mail and responding to mail sent by

others, a leader influences the flow of information through a project. If a leader has clear

thoughts and asks solid questions, she encourages others to do the same. One response to

200 CHAPTER TEN

a large discussion with dozens of people can send a wave of clarity through the

organization. But the leader hurts the team's ability to communicate well if she expresses

fuzzy thoughts and makes obscure or obfuscated points.

One major challenge is that few admit they send bad email. For example, take the

following test: using your own subjective judgment, what percentage of email that you

receive from people within your own organization is high quality? Average quality?

Totally useless? Now ask yourself what percentage of the email you send fits into each of

these categories. As an experiment, I once asked a small group of PMs, testers, and

programmers this very question. By a factor of almost 2 to 1, everyone claimed that other

people wrote crappier mail than they did. Because they all worked together, this

anecdotal data implied that everyone thinks the problem is email generated by others,

not themselves. I don't have harder data to support this claim, but it rings true.

Somehow, when there's a communication failure, on average people tend to blame the

other guy (for copious evidence, see any history of international politics in Western

civilization).

The good piece of email

One habit I learned at Microsoft was the reward for the good piece of email. Many

important debates took place on email, and it was common for these discussions to

include people at multiple levels of hierarchy—line PMs, middle managers, and VPs

might all be exchanging mail back and forth, treating each other mostly as equals. I often

found myself in the middle of these debates, usually because something I was responsible

for suddenly became very important to the division.

Every so often in these email discussions, I'd make a really strong point in response to

something someone else said. I'd carefully word it, revising it over and over to get it just

right: simple, strong, and clear. Then I'd send it out. Sometimes my arguments would get

torn apart; sometimes I'd be ignored. But on occasion, I'd hit a home run. When I did, I'd

often get a private email a few minutes later from a VP or "other person much more

important than I" that said only two words: "Good email." The discussion might still rage

on, but I'd know that I scored some points in the argument. More important was this:

someone took the time to let me know that my points were good, and that I was

expressing them in a praiseworthy way.1

Smart managers value good email. Managers read so much poorly written email every

day, and if they don't take the time to reward those who communicate well, they're

1 It's embarrassing, but I kept those notes of appreciation, probably because there wasn't enough
outward praise from management. IM and email provide no equivalents to head nods or smiles
that give secondary feedback during meetings: perhaps these side emails compensate for that in
some way.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 201

unlikely to see more people do it. Little side emails take about 15 seconds to send, and as

my story indicates, may mean more to others in your organization than you think.

But praising others is easier than taking responsibility for your own bad email habits. As I

mentioned previously, I'm convinced that most people think they write better email than

others think they do (and the more senior you are, the harder it might be to get honest

feedback about your email etiquette). Because leaders and managers send more email

than others, it's critical to sort out what bad habits you have and invest energy in curbing

them. Here is some project management-style advice on what good email looks like and

what some of the common bad habits are.

• Be concise, simple, and direct. Pascal, the mathematician for whom the language is

named, once wrote, "If I had more time, I'd write a shorter letter." Language, like

code, can be optimized. Instead of optimizing for logical efficiency, you want to opti

mize for communication efficiency. Unlike code, a grammatically and logically correct

three-word message is useless if the recipient can't figure out what the hell it means.2

Consider who is reading the email and how you would explain what you need to say

if you were talking face to face. What details would be needed? Omitted? What con

cepts can you assume he knows? What metaphors can you use? For important email,

step away from it for a few minutes and then reread it, with these questions in mind,

before you send it. Or for important mail, or mail going to a large number of people,
have one of the people on your team skim it over and give you feedback.

• Offer an action and a deadline. The best email has a specific request that is clearly
stated, and, if appropriate, is tied to a reasonable deadline. It should be easy for people
reading the email to understand why they are receiving it, how they are impacted by
the action, and what they need to do (before the deadline). Assuming you enforce the
deadline ("Requests must be in to me by Friday"), you set yourself up for people to be
attentive to future actions you communicate through email, which puts you in a posi
tion of power.

• Prioritize. Is it necessary to send that email? The more emails you send, the more

work others will have to do to prioritize your requests. How many of the things you're
mentioning are important? If you have 10 issues to discuss, break them into two

groups and focus on the most important group. Consider if some things can be better

handled on the phone, in the next team meeting, or by going door-to-door. If you
don't prioritize, expect the recipients to prioritize for you—in a way that serves their

interests, not yours.

2 A possibly apocryphal story about Victor Hugo describes a clever use of compact communica
tion. When LesMiserables was published, Hugo sent a telegram to his publisher asking for results.
His telegram was as concise as possible, consisting of one character: "?". The response also con
sisted of one character: "!". Apparently sales were spectacular. If there's a lesson here, it's that
two people that know each other well can communicate more efficiently than those who don't,
which is another reason for developing relationships with coworkers.

202 CHAPTER TEN

• Don't assume people read anything (especially if it's important to you). It's

arrogant to assume that because you sent it, someone has read it. People get tons of

email every day, much of it from people just as important as you are. The more impor

tant the issue is to you, the more energy you have to expend to make sure people are

actively doing something about it. The more trust you've built with the people on

your team, the more assumptions you can make about how people will respond to

things you send.

• Avoid giving a play-by-play. It's rare that anyone needs to know the sequence of

events that led to something happening. Avoid writing emails that focus on the con

tributing actions by different players: "When Sally first designed our build process, she

was interested in...", or narrative-driven prose like "The meeting started off fine, with

Bob and Steve talking through their slides with great passion and conviction. That is,

until...." Instead, focus on impact: what happened, how this changes the world, and

what we're going to do about it. If you're compelled to include background details, list

them below the critical points. The same goes for references to slide decks, web sites,

papers, etc. Make it possible for anyone to skim the first two lines and know immedi

ately if it's important enough for them to read any further.

• Sequester FYIs. I've been on teams that persisted in forwarding tons of semi-interest-

ing-but-not-directly-relevant-to-anything email. Some people call these FYIs, or for

your information emails. Curiosity and industry awareness are fine habits, but don't

let them dominate communication forums used for more tangible work. Set up an

email alias or discussion group for "industry trends" or "tech watch," where your team

can post the cool things they find. If your email client supports it, ask everyone to set

these kinds of emails to low priority, or add "FYI:" to the front of the subject line.

Make this stuff easy for people to filter out.

• The telephone is your friend. If ever you don't understand something in an impor

tant email you've received, don't respond with an elaborate five-part question. See if

you can reach the sender of the email on the phone. Interactive communication is

always better at resolving confusion and conflict than email. A 30-second phone con

versation is often equivalent to a long series of time-consuming email exchanges. If

you do get the sender on the phone and resolve the issue, you can then share your

clarified understanding in an email sent to everyone—odds are good that if you were

confused, so were others. Telephones (or a walk down the hallway) are the great

expediters of group email communication.3

3 There's probably some law of communication claiming that the dominant mode of communi
cation (email) still depends on the previously dominant mode (telephone) as its fallback: IM -♦

Email —• phone —• snail mail -> smoke signals —• face-to-face -♦ etc.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 203

An example of bad email

Awful email is easy to recognize. Awful email is often very long, poorly written, has

many attachments, and is hard to skim. It can be spotted from very far away, and it is

usually either ignored or challenged appropriately: "Fred: I found this email very

confusing. If others agree, can you either revise or call a meeting? If not, I'll call you.

Thanks." For this reason, awful email is not the most dangerous kind.

The really dangerous emails are the ones that look like well-written communication but

are, in fact, ripe with distractions, half-baked thoughts, and ambiguities. What follows are

two examples of the same email: one bad and one good. Here's the bad one.

From: Jack Colono

To: Striker development team

Subject: Summary of recent checking discussions

Over the last four weeks, many of us have wondered when the process for redesigning

our code check-in procedures would finally be complete. I know it's taken a long time

and that there has been much debate in hallways and meetings about the right way to

go about deciding on, much less figuring out, the actual design for the new procedure

as well. Choosing the members of the committee was not easy for me, and as many of

you know, took more time than expected. Apologies for that, but these things happen.

So, first I'd like to give you some of the highlights of our new proposal, in case you

missed one of the weekly discussions we've had, or didn't come by to chat with me

about it over the last two weeks:

1) Check-ins are very important. They determine what we're really building.

2) Everyone has opinions. We've all heard Randy and Bob each describe in detail why

they think the current system is so bad.

3) There are no easy answers. Most of the changes we've discussed all have

downsides. So, when we do finally reach a conclusion, there will be some rough edges

on transition and possibly on an ongoing basis.

With that out of the way, I'd now like to let you know that later this week I'll be

sending out the revised proposal. Please be on the lookout for the next piece of email

from me. It should be coming soon.

Thanks,

Jack

20H CHAPTER TEN

An example of good email

Unlike the bad example, this email does not tell any stories or try to justify anything: it's

all action. It's short, clear, and to the point. Instead of talking about proposals, it actually

offers one. While it has the flavor of an ultimatum, it serves the purposes of creating

escape velocity for the proposal, helping to push it out the door.

From: Jack Colono

To: Striker development team

Subject: New check-in process

The final proposal for the new check-in process is complete and is up on the web site:

http:llintmanlproclcheck.inl.

Because this has been a contentious issue, I've discussed this proposal one-on-one

with much of the team and incorporated everyone's feedback. If this didn't include

you and you have strong opinions, please send me mail ASAP.

But be warned: this is the second public notice about these upcoming changes. The

opportunity for making changes is currently small and is getting smaller by the day.

Please act now or prepare to hold your peace.

Friday at 5:00 p.m. is the deadline for contacting me with feedback on the above

proposal. I will consider and respond to any questions or comments raised before then

(in collaboration with appropriate folks). Otherwise, this matter is closed and will

become effective next week.

Thanks,

Jack

As clear as the difference between these two emails should be, don't read too much into

these examples. They're not meant to be templates for things to always or never do. Each

email you send might have a different purpose, and it might make sense to contradict

these examples. As long as you're writing it thoughtfully and with clear reasons, do

whatever is necessary to get the job done. But always be on the lookout for ways to cut

to the chase and use email to make things happen.

How to run the non-annoying meeting
Here is my meeting confession: I do not like regularly scheduled meetings. Unless there is

a force keeping them lean and tidy, they will eventually slide into slow, bloated,

frustrating, dysfunaional wastes of time. However, if there is that force in place, meetings

can be energizing, centering experiences for everyone in the room. The challenge is that

whoever organizes and runs the meeting needs to know what he's doing.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 205

For starters, understand how expensive meetings are. If a meeting lasts an hour, and 10

people are there, that meeting costs 10 person-hours. Instead of fixing bugs or closing

issues—two guaranteed forms of progress—the entire team is locked up in a conference

room waiting for something to happen that is worth the expense of their time. Maybe it

happens, maybe it doesn't. So, I think programmers and others are justified in

complaining about meetings; relative to the value of time in front of a computer, time in

meetings doesn't usually score well.

However, if the meeting requires participation because important ideas or decisions are

on the table, reveals information that changes everyone's post-meeting behavior, or

conveys inspiration or understanding for what's going on across the project, then the

value of the meeting is much higher. Instead of a chore, it becomes a way to consume or

exchange information difficult to obtain through other means.

The art of facilitation

Years ago, I remember being in a big argument over how we were going to architect an

important part of Windows. I had arrived early and watched everyone walk in the room

and take their seats, smugly confident in their own opinions. I watched them lean back in

their chairs and run through their arguments in their minds before the meeting even

started. And, of course, argue is exactly what we did. For 10 minutes, the discussion

shifted back and forth in big waves. Conflicting diagrams were violently sketched out

across whiteboards, hands flailed in disagreement, and sarcastic statements and rhetorical

questions abounded. Finally, my group manager, Hadi Partovi, stood up. He quietly

walked to the whiteboard at the front of the room.

Without saying a word he wrote a list of questions. The room became silent. Everyone

stopped arguing and watched what he was doing. When he finished, he asked if he had

the right issues on the board. Everyone nodded. He then led us through them one at a

time. There were still arguments, but when structured, they were dramatically less

continuous. Hadi didn't offer his own opinion (although I knew he had one). Instead, he

used his energy to help the rest of us navigate through the questions we'd agreed on. This

is the art of facilitation.

Facilitate (v): The act of making things easy or easier.

Good meetings happen only when someone in the room understands how to facilitate.

Some people do it instinctively, and others can't even recognize when it's being done.

Like other interpersonal skills, people have different levels of awareness about the many

ways interaction occurs and how to influence it.

Facilitating can be a semiformal role, held by a designated person who runs the show

(often the PM), or by whoever called the meeting. Some teams have strong enough

cultures of facilitation (meaning that many people have the skill) that they can switch

206 CHAPTER TEN

who's playing this role naturally in the course of conversation. But most of the time, on

most projects, meetings are desperately in need of facilitation talent.

Facilitation pointers

Facilitation is a skill that most teams take for granted. There are good books4 and courses

on how to facilitate, but your best bet to understanding the skills involved is to watch

someone who does it well, and then apply what you've observed in the next meeting you

organize. However, there are some pointers worth mentioning. It took me a long time to

figure these out, and they go a long way in helping you to develop whatever natural

facilitation skills you have.

• Establish a host position. If you're the organizer of the meeting, you're the de facto

facilitator. Start the meeting by introducing people, clarifying the agenda, and begin

ning the discussion. If you behave like a host from the moment people walk in the

door, they will behave like guests and treat you with respect. Carefully choose where

you sit in the room: sitting at the head or center of a table gives you the most author

ity, and sitting in the corner gives you the least.

• Listen and reflect. The core function of the facilitator is to help other people com

municate. If someone says something half-baked (but not completely worthless), help

him to develop the idea. Try the reflection trick of restating what people say: "So

Mike, what I think you're saying is <insert better way for Mike to express his point

hero. Do you agree?" This refines his point and demonstrates for everyone how to

make the discussion collaborative. However, be careful to separate your desire to

champion your own opinions—it's hard to be a good facilitator if you're caught up in

your personal agenda. Some organizations hire professional facilitators who help out

with contentious meetings and offsites.

• Direct the conversation. With the agenda as your guide, jump in to push the discus

sion back on track when necessary. Be flexible and let people have their say, but if the

conversation is heading south when the agenda demands you go west, something

must be done. Politely interrupt, point to the agenda on the wall, and ask that they

table the discussion at hand until the issues in the agenda have been covered (or offer

to adjust the agenda if this new issue is worthy). Pay attention to who is speaking too

much and who isn't speaking enough, and manage the floor accordingly ("Bob, hold

on one second...Steve do you have any thoughts on this?").

• End the conversation. Have a threshold in mind for when an issue should be

resolved elsewhere. It's often enough to identify a problem, and an owner for the

problem, and ask that owner to go off on his own and come back tomorrow or the

next day with a proposed solution. This is a great way to end side debates that have

taken over meetings: "Whoa, hold on guys. Sam and Bob—you two go off and figure

4 Two good places to start are The Facilitator's Fieldbook, by Tom Justice (American Management
Association, 1999) and Mining GroupGold, by Thomas A. Kayser (McGraw-Hill, 1991).

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 207

this out, OK? Then come back and let us know what you've decided." Never let two

people dominate the floor, when five or six other people are bored out of their minds

for the entire hour.

• Make history. Take time to document the discussion (if possible, as it happens). As a
facilitator, this helps you track where you are in the agenda and communicate this to

the group. For this reason, I am completely infatuated with whiteboards. They're the
easiest way to capture what people are saying, make to-do lists, or identify points of

(dis)agreement. But how you do it doesn't matter. What's important is that when the

meeting is over, the next steps and important points are recorded and emailed out to

those who attended the meeting. Some say that being the scribe is a position of power
because you can influence how things are recorded and what aspects are emphasized.

Even if that's not the case, sending out notes does provide a forcing function for oth
ers to clarify anything you've misrepresented.

Even if you don't agree with these pointers, I hope they've helped you to recognize that

there is a leadership role to be played in meetings. If no one is actively playing this role,

meetings will tend to be frustrating and/or boring affairs. The general refrain is "Meetings

suck and should be avoided," but the real problem is how the meetings are run, not the

idea of meetings themselves.

Three kinds of meetings

The greatest trap for meeting organizers is forgetting how versatile meetings are. Not all

meetings should be run in the same way or should have the same structure. The reason

why many meetings are boring for 90% of the people there is because the goals are in

conflict with the meeting's structure and size. You can't have highly interactive

discussions with more than seven or eight people, no matter who's facilitating. As a very

rough rule of thumb, there are three kinds of meetings, with different constraints and

applications. Always consider what kind of meeting will best serve the problem that

needs to be solved.

• Highly interactive discussion. Everyone in the meeting is expected to participate.
Goal: depth and intimacy. Focus: exploring or resolving specific issues or seeking out

alternative ideas. Size: small to medium (2-8). Examples: design discussion, brain

storming, crisis management, and triage.

• Reporting or moderate discussion. One person has content to cover, and she needs

people to respond to or understand that content. Goal: get high-level feedback or share

knowledge. This can be highly interactive, but it occurs only for a subset of the group.

Several different people may take the floor during the meeting, changing the roles for

who's driving and who's responding. Size: medium to large (5-15). Examples: spec
review, architecture review, management review, and small presentation.

208 CHAPTER TEN

• Status and project review. Objective is to summarize the status of a team or an

entire project. Gives leaders a chance to make course corrections and present new

directives from management to the entire group at once. When these meetings include

the activity of collecting status, or force everyone to listen to the reporting of status,

they are often the most boring experiences in the known universe. Size: medium to

large (10-100). Examples: status review, project review, big presentation, and all-

hands meeting.

The most evil meetings occur when there is a mismatch of the goals and how they're

organized. If there are more than 10 people in the room, it's very difficult to have a

highly interactive or deep discussion. There isn't enough time for everyone to participate,

and what will happen is that a small group of dominant personalities will use up most of

the available time (unless someone facilitates the meeting to avoid this; however, a small

group of dominant personalities isn't always a bad thing). Most committees take this form

and have the expected mediocre to crappy results.

The evil of recurring meetings

The second most evil meeting is the one that recurs (weekly, daily, monthly), and then

lives on for weeks despite it not being needed anymore (some buildings at Microsoft were

impossible to reserve meetings in because abandoned recurring meetings clogged up the

conference-room scheduling system). Recurrence is great in that it sets a rhythm for work

and forces people to be in the same room together at the same time. All sorts of small

issues can be resolved quickly and casually when people are physically together and can

depend on seeing each other in person once or more a week. "Oh. Hey, Sam, I've been

meaning to ask you...is this API going to change? I saw your check-in and I thought it

might impact me, but I wasn't sure." Email and telephone calls don't guarantee

responses, but when the person is sitting next to you, you can usually get what you need.

The problem is that it becomes too easy for recurring meetings to live on long after the

value of the meeting has disappeared. When people stop coming, or others use the time

to check email on their laptops, something is wrong; the meeting doesn't warrant the

time anymore. The fear managers (and other meeting organizers) often have is that by

canceling the meeting, they are losing control. But on the contrary, torturing teams with

unneeded meetings is how managers lose the influence they're trying to protect.

Here's a good rule: opt-in meetings. Keep the recurring meeting on schedule and ask

everyone to check his email for an agenda five minutes before the meeting is supposed to

start. If there is a solid agenda, the organizer sends it out, and the group meets. If there's

no agenda, you send out email saying so, and the meeting is canceled (for that week).

This gives the team a reserved timeslot if needed, but doesn't force people to attend bogus

meetings. The recurrence should be canceled entirely if no meeting occurs for more than

three or four weeks.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 209

Meeting pointers

This last section is a list of commonly overlooked tactics for successfully running and

participating in meetings. There's nothing sexy or interesting about this: there's just

certain things you have to deal with when working with small groups of people. Anyone

who has run many meetings will have her own pet list of tricks or tips. If nothing else, I

hope this list helps you to think about what things have worked for you in the past.

• Are the right people in the room? Some people will come if you invite them.

Some people won't come unless you knock them unconscious and drag them (and/or

bribe them with candy). Much of the work PMs do is getting the right people in the

room at the right time, so don't be afraid to run down the hallway or barge into other

meetings if the person who's supposed to be in your meeting hasn't arrived yet. Even

worse: if you're starting a meeting and can't find the right people, stop the meeting.

Don't waste an hour of time doing stuff you'll just have to do again tomorrow or the

next day when you finally get a quorum. Lastly, if you do have the right people, but

see people in the room who don't need to be there, tell them so. Be diplomatic, offer

to send them notes or summaries, but get them out of the room, especially if they are

going to get in the way.

• Sit or stand. One trick to keeping meetings short is to have everyone stand up (e.g.,

meet in the hallway or outside). The theory is that this forces people to get to the

point and only raise issues truly worthy of group discussion. The meeting needs to last

for only 5 or 10 minutes, tops. The SCRUM5 process advocates a daily standing meet

ing for status purposes, where only three questions are asked: What have you done

since the last meeting? What is blocking you? What will you do by tomorrow's meet

ing? With this kind of hardcore commitment to lean meetings, even the crankiest

engineer should be willing to attend. Traditional seated meetings are reserved for

smaller groups. It's worth at least trying this as an experiment; if nothing else, it

inspires people to consider that a meeting scheduled for one hour doesn't need to con

sume the full hour.

• Prepare. Meetings often fail because of lack of preparation. Always consider how

much preparation time you'll need for a meeting to serve its purpose. Sometimes, this

will be minimal: a list of questions or open issues, or an email you send out the day

before with the agenda. Other times, it's elaborate: a slide deck, a demo, stapled hand

outs. Whenever you have a meeting not go as well as you'd like, ask yourself what

could have been done differently. Most of the time, the answer will involve some form

of negligent preparation. A trick is to consider this when you send out a meeting

invite, and add time to your own calendar before the meeting for the appropriate

amount of prep.

5 For more information about SCRUM, see http://c2.com/cgi/wiki7ScrumMeetings or http://www.
controlchaos.com/.

210 CHAPTER TEN

• Laptops and gadgets. I have a strong bias against the use of gadgets and laptops dur
ing meetings. If the people in the room don't think what's going on is important
enough to warrant their fullattention, then they shouldn't be in the room (unless it's
a status or project-review-type meeting, where there's a low signal-to-noise ratio).
Face time is precious and should be used for things people naturally feel are impor
tant and worth their time, whereas email and voice mail are designed to wait. If you

have an opinion about this, talk to others on the team and see if you can agree on a
policy for appropriate laptop use in meetings.

• Being on time. This is a seniority-drivenbehavior. If the VP tends to arrive late,
everyone else will. If she usually arrives on time, everyone else will. You can try to
start on time to make a point, but if the important people aren't there, you'll only end
up repeating yourself once they do show up—it'sa lost cause. However, if it's peers or
reportsyou're waiting on, try comedic annoyance tactics. Myfavorite trick is to call
the office of each person who is late. If he's still there, mildly ridicule him on the
phone in front of everyone else: "Hi Sam. We'd be honored by your presence in con
ference room 5." If he's not there, leave him a voice mail. Put him on speakerphone

and have everyone in the room say, in unison, "We love you Sam!" or sing Happy
Birthday.Do this at every meeting for whoever is late or is last to arrive. You'll start
meetings offwith something fun—and an additionalmotivator to get there on time.

• End with clear steps and owners. When a meetingends, all that matters is what
happens next. You can have the ugliest, nastiest, mostbrutal meeting ever in the his
toryofmankind, but ifyou leave the room withthe right listof five things that need
to be done, and the names of five people who have agreed to get those things done,
you'vesucceeded. Never let people leave a room withouta clear plan forwhat the
next step is. Part of your preparation should be basedon how you think you can
achieve this outcome and who the right people are for each task.

Summary
• Project managersare prone to annoyingothers. Someof it is avoidable.

• People getannoyed formanyreasons. Often, it's when they feel their timeiswasted,
when they are treated like idiots, or when they are expected to endure prolonged
tedium and mistreatment.

• Good processes have many positive effects, including accelerating progress and pre
venting problems. But, they are difficult to design well.

• Non-annoyingemail is concise and actionable, and it quickly allowsreaders to deter
mine whether they are impactedenough to need to read more than the subject line or
first sentence.

• Meetings run well when someone facilitates them.

• Frustrating meetings occur when the goals are mismatched to the type of meeting.

HOW NOT TO ANNOY PEOPLE: PROCESS, EMAIL, AND MEETINGS 211

Exercises

A.Who isthe most annoying person you know? What about himannoys you? Do you
think anyone has evergiven him feedback on theseannoyances? If you want to be
less annoying to your team, how can you invite their feedback?

B. What is the bestwork process you've experienced? What made it so good? Was it still
as beneficial to the project a year after it was first used?

C. What is the worst work process you've experienced? What made it so bad? Could
leaders havedone something different? Did yousuggest changes that wereignored, or
didyoukeep quiet? How cana team leader get inputfrom her teamabout annoying
processes?

D. Whenwasthe lasttimeyou complimented someone forhis simple, clear emails? Over
the next week, every day, thank the person who sent you the clearest, most effective
email.

E. Takecontrol over your email. Thereis no law that says you must read it as it comesin,
or respond to it within an hour. Some studies show that if you do your email in
batches, two or three times a day, your time spent working on email drops andyour
general effectiveness climbs. As an experiment, keep a log ofevery timeyou check
youremail. Make it a goal to check it oneless time tomorrow, and again the dayafter,
until you are in control of it.

F. Here's a team experiment: pick oneafternoon a week asa no email zone; forexample,
from 2-5 p.m. no oneisexpected to answer anyemails. This frees everyone to take
more control over their work for a few hours. After the experiment, ask the team if
they felt more productive, less productive, or no difference.

G. Bring a notepad withyou to the nextfew meetings you attend. For each meeting,
identify who is facilitating the meeting and take notes on how theyperform. At the
endofthe week, make a list ofthebest tricks andhabits you saw andmake a goal of
emulating them in your own meetings.

H. If youfind yourself in a meeting mismatch (themeeting is the wrong size for the
goals), what should youdo? a) Wait to see ifanyone else complains; b) suggest to the
meeting organizer that changing the meeting's size will increase the oddsit goes well;
or, c) starta game ofmusical chairs andkick people out until the meeting is the right
size?

I. Every bureaucracy in history grew outofa simple, lean process. Research the history
ofthe bureaucratic system that frustrates you the most (e.g., government taxsystem,
HRhiring procedures, expense reporting at work, etc.). Find out what the first version
ofthat system was like and howit grew into the system you knowtoday. Could the
bureaucracy have beenprevented? What would youhave done differently nowthat
you know the history?

J. Take a lookat all of your recurring meetings and rank them by importance. Cancel the
leastimportantrecurring meeting, and try to replace whateverpurpose it served with
other meetings or email.

212 CHAPTER TEN

CHAPTER ELEVEN

What to do when things go wrong

N o matter what you do, how hard you work, or who you work with, things will stillgo
wrong. The best team in the world, with the best leaders, workers, morale, and resources,

will still find themselves in difficultsituations. The only way to completely avoid difficult

situations is to do nothing of importance or to consistently put yourself in situations, and

on projects, where you are safe from all forms of risk—two things that rarely contribute
to success.

"All successful projects are simply a long series of adversities that must be
overcome. Far from it being unusual to face adversity, it is normal, and our

business is to overcome it. The real test is not when we are successful when

there is no adversary,but when there is and we triumph."

—William A. Cohen

For these reasons, good PMs must be prepared to deal with difficult situations. It takes a

certain kind of wisdomto realize that when bad things happen, they happen. Nothing
can be done to changethem after the fact. Instead, how the team responds to adversity
may be a larger factor in project success than the team's abilityto avoid adversityin the
first place. Both are important, but resiliencyand recovery ability are the attributes that
make dealingwith the unexpected possible. Without them, a perfect team and perfect
plan can spiral out of control with just a nudge in the wrong direction.

Thischapter will provide three things: a rough guide (or first-aid kit) for what to do when
things go wrong, thoughts on how people and teams respond to difficultsituations, and
coverage of tactics and approaches for managing in tough times.

Apply the rough guide
"Youcanblame peoplewho knockthingsoverinthe dark, oryoucanbeginto
lightcandles.You're only at fault if you know about the problemand choose to

do nothing."

—Paul Hawken

This section is a primer on how to handle difficult situations. Later, I'll cover common

situations and offer advice, but this guide should help you work through whatever it is
that led you to flip to this chapter.

1. Calm down. Nothing makes a situation worse than basing your actions on fear,
anger, or frustration. If something bad happens to you, you will have these emotions
whether you're aware of them or not. Theywill also influence your thinking and
behavior whether you're aware of it or not. (Ruleof thumb: the less aware you are of
your feelings, the more vulnerable you are to them influencing you.) Don't flinch or
overreact—be patient, keep breathing, and pay attention.

214 CHAPTER ELEVEN

2. Evaluate the problem in relation to the project. Just because someone else
thinks the sky has fallen doesn't mean that it has. Is this really a problem at all?
Whoseproblemis it? Howmuch of the project (or its goals) is at risk or may need to
change because of this situation: 5%? 20%? 90%? Put things in perspective. Will
anyone die because of this mistake (you're not a brain surgeon, are you?)? Will any
citiesbe leveled? Plagues delivered on the innocent? Help everyone frame the problem
to the right emotional and intellectual scale. Asktons of questions and get people
thinking rather than reacting. Work to eliminate assumptions.Make sure you have a
tangible understanding of the problem and its true impact. Then, prioritize: emergency
(now!), big concern (today), minor concern (this or next week), bogus (never). Know
how long your fuse is to respond and prioritize this new issue against all existing
work. If it's a bogus issue, make sure whoever cried wolf learns some new questions to
ask before raising the red flag again.

3. Calm down again. Now that you know something about the problem, you might
really get upset ("Howcould those idiots let <insert incredibly stupid thing hero
happen!?"). Finda way to express emotions safely: scream at the sky, workout at the
gym, or talk to a friend. But do express them.1 Knowwhat works for you, and use it.
Then return to the problem. Not only do you need to be calm to make good decisions,
but you need your team to be calm. Pay attentionto who is upset and help them calm
down. Humor, candor, food, and drink are good places to start. Being calm and
collected yourself goes a longway towardcalming others.Andtakingresponsibility for
the situation (see the later section "Take responsibility"), regardless of whose fault it
was, accelerates a team's recovery from a problem.

4. Get the right people in the room. Anymajor problem won't impact you alone.
Identify who else is most responsible, knowledgeable, and useful and get them in
together straightaway. Pull them out of other meetings and tasks: if it's urgent, act
with urgency, and interrupt anythingthat stands in your way. Sit them down, close
the door, and run through what you learned in step 2. Keep this group small; the
more complex the issue, the smallerthe group should be.2 Also, considerthat (often)
you mightnot be part of this group: get the people in the room, communicate the
problem, and then delegate. Offer your support, but get out of their way (seriously—
leave the room if you're not needed). Clearly identify who is in charge for drivingthis
issue to resolution (see "Roles and clear authority," later in this chapter), whether it's
you or someone else.

A common destructive habit, especially among men, is to pretend that nothing ever bothers
you. This iscalled denial. Atsome emotional level, weareaffected byeverything. Those people
with more awareness are called—getready for this—healthy. Have feelings and explore them.
They're good for you.

This is cultural. I've been on teams that had a culture of very good communication. Things
stayed intimate even with seven or eight peoplein the room, even on contentious topics. How
ever, most teams don't have this kind of intimacy. To cover ground quickly, you have to start
small, build momentum, and then bring people in.

WHAT TO DO WHEN THINGS GO WRONG 215

5. Explore alternatives. After answering anyquestions and clarifying the situation,
figure out whatyour options are (see Chapter 8). Sometimes thismight takesome
research: delegate it out. Make sure it's flagged as urgent if necessary; don't ever
assume people understand howurgent something is. Be as specific aspossible in your
expectation for when answers are needed.

6. Make the simplest plan.Weigh theoptions, pick thebest choice, andmake a simple
plan. The best available choice is the best available choice, no matter how much it
sucks (acrisis isnot the time for idealism). The more urgent the issue, the simpler
your plan.Thebigger the holeyou're in, the moredirect your path out of it shouldbe.
Break the plan into simple steps to make sure noonegets confused. Identify two lists
of people: those whose approvalyou need for the plan, and those who need to be
informed ofthe plan before it isexecuted. Go to the first group, present the plan,
consider their feedback, and get their support. Then communicate that information to
the second group.

7. Execute. Make it happen (see Chapter 13). Ensure whoeveris doing the work was
involved in the process andhas an intimate understanding ofwhyhe's doing it. There
isno room for assumption orambiguity. Have specific checkpoints (hourly, daily,
weekly) to make sure the planhasthe desired effect and to force you and others in
power to consider any additional effort that needs to be spent on this issue. If new
problems do arise, start over at step 1.

8. Debrief. After the fire isout, get the right people in the room andgenerate a list of
lessons learned. (This group may be different from theright people in step 4 because
youwantto include people impacted by, butnot involved in, the decision process.)
Ask the question: "What can wedonexttime to avoid this?" The bigger the issue, the
more answers you'll have to this question. Prioritize the list. Consider who should be
responsible formaking sureeachofthe first few items happens.

Common situations to expect
There are certain badsituations that inevitably occur on projects. Muchof thisbookis
about minimizing the chances of these situations happening, as well as minimizing the
severity ofthemshould theyoccur. But the universe isa difficult place for projects, as
there are more ways for things to go wrong than right. The more projects you work on,
the more likelyit is you'll experience all of the things listedhere and have the chance to
learn firsthand how to deal with them.

Myfirst disaster was in 1996, when I wasworking on the parental controlfeatures of IE
3.0. Wewereworking to support the W3C standard forparental control systems,
planning tobethefirst web browser to try tomake theWeb "safe." I thought theproject
wasgoing well, until we had our first review meeting. Ofthe 10people there, 9 were so
disappointed bymyanswers to their questions that they stopped listening to me and the
meetingspiraled out of control. They wereall experienced developers and architects, and

216 CHAPTER ELEVEN

their questions were much better than my answers. Everything seemedwrong: people
were yelling and my team was demoralized.Ten minutes into the meeting, I knew it was
a disaster. Twenty minutes in, I wished I could disappear. When the hour was over, I

could barely get up off the floor.

Folks at Microsoft sometimes call this sort of thing "trial by fire." The idea is that work is

pressure and there are no kid gloves. I have a vivid memory of that day because it was
the first time I understood how much was required to do a good job. I had heard stories

of similar experiences, but until it happened to me, I didn't fully understand. But

afterward, things were clear: it was my job to have things working well enough that a

meeting like that would never happen again. As painful as it was, it gave me an

opportunity to learn things I couldn't have learned any other way.

From my experience training other managers, I've learned that it's difficult for people to
relate to a problem they haven't experienced (another reason simulations should be used

in training). Despite how easy it seems to relate to someone else's story about slipping

schedules or changing requirements, most of us manage to believe we're immune. Or

more precisely, that the problemswe had (or are having) were unique in some way that
made them unavoidable and unlike anything anyone else has ever experienced.

So, in an act of sheer optimism, I'll offer you, dear reader, a list of common difficult

situations. If nothing else, skimming this list should help you reconsider the experiences

you've had, as well as the ones you're currently in.

How to know you are in a difficult situation

As far as projects are concerned, I consider a situation difficult if it meets any of the

following criteria:

1. There is an acute gap between reality and the current plan. ("We're supposed to
release to web in an hour, but Fred says the entire customer database is corrupt, the

power has gone out, and the programming team is drunk.")

2. Confusion exists about what the gap is, what's causing it, whose job it is to resolve it,
or possiblywhether it even exists. ("What iceberg?I don't see an iceberg.")

3. It's unclear how resources should be applied to resolve the gap. There may be fears
that taking action or doing nothing may make things worse. ("Don't just stand there,
do something! Wait, no... don't just do something, stand there!")

The snide comment about this list is that for some evil projects, these traits might apply

from day one. Fair enough. Status quo in one organization is a fire drill in another. While
it is management's job to minimize chaos—hopefully to the point that it's only specific

problems at specific times and not a general trait of the work environment—we all know
that sometimes management isn't able to do their job (insert second snide comment

WHAT TO DO WHEN THINGS GO WRONG 217

here). That said, the advice in this chapter appliesequally well no matter how often you
have to apply it. But if you find yourself reading this chapter often, it might be time to
look for a new manager or a new place to work.

The list of difficult situations

The rough guide at the beginningof this chapter can be appliedin all of the following
situations, though the domains and skills involved may differ. For reference, I've included

some of the possible responses to consider (fodder for step 5, "Explore alternatives," in
the rough guide) for each of these situations:

• Oversight or realization. Most of what goes wrong on projects are oversights. Some
decisionmade days ago didn't pan out and now something doesn't work. The prob
lem is that the schedule remains—something new needs to be done. Possible
responses: change the requirements, change the schedule to reimplement (cut the
next-lowest-priority feature), or if necessary, explore new design alternatives. If you
did design exploration (see Chapters 5 and 6), there may be a good fallback alterna
tive design that's already well understood.

• You or your team is forced to do something stupid. This can be the result of a
decision by management or a client who refuses to acknowledgean aspect of the prob
lem. This is frustratingbecauseyou know better, but you don't have enough power to
prevent it. Possible responses: recognize you may be in a management trap. If you do
manage to succeed, you'll be put in the same situation again in the future. If you fail,
you may be blamed for never believing. So, if this is a chronic problem, you need to
invest more in managing up (see Chapter 16). Prioritizeyour objections, have specific
recommendations, and use your political and negotiation skills (see "Conflict resolu
tion and negotiation," later in this chapter) to work toward a compromise. You won't
win, but until you find better management, you can protect your team. Try to isolate
the stupidity to a feature or milestone where it will do the least damage (see the
upcoming section "Damage control").

• Failing schedule or resource shortage. Whenever the likelihoodof making the
next date drops below 75%, the dates are no longer probable. It's possible, but not
probable. Possible responses: see Chapters 2 and 14. It's all about exit criteria and its

implied priorities. Either you cut features, add time to the schedule, or ignore all
known logic, write up your last will and testament, and try to make the date anyway.
Try to consider if schedule risk can be isolated and moved off the critical path, or if it
can be traded into a future milestone for something deemed less important. Brook's
Law3 implies that adding people in the face of slipping schedules can have less value
than expected.

3 Brook's Law, roughly, is that adding people has two negative effects: first, it takes time for them
to get up to speed; second, the overhead required to get anything done increases. So, even in the
best situations, adding additional people will have diminishing value. But there are exceptions.

218 CHAPTER ELEVEN

Quality is low. You won't know if quality is low if you don't know what the quality
is. If you're using daily builds or have some frequently tracked metrics (bug count, etc.),
you'll know early on. There are many kinds of poor quality: fragile code, failure to ful
fill requirements, poor performance, or instability. There are also many causes of poor
quality: engineering (core development practices), process (check-ins and tools), or
schedule/planning. Possible responses: firm up the team's understanding of what good
quality is and set daily goals for it (see Chapter 15). Sacrifice something (features,
time) to afford more quality. Often, the best move is to slow the rate of progress until
the quality bar has been met and everyone understands how to meet it, then acceler
ate the rate of progress again.

Direction change. Management or the market itself can demand change. This isn't
necessarily bad (it might even be a form of progress)—it's just unlikely to be fun. Bud
get cuts or new high-level goals may be involved. Possible responses: can the change
be sequestered to certain components? Separate out what specs or parts of specs are
still viable, and keep them in the development pipeline (see Chapter 14), then priori

tize what needs to be changed. Make sure you're not being dictated to: being told, "Do
X" is not the same as being told, "We have to generate 10% more revenue." The

former is a directive; the latter is a problem to solve. Fight to find out what the prob

lems are, and get involved by proposing palatable solutions (see "Conflict resolution

and negotiation," later in this chapter).

Team or personnel issues. One or more people are upset about something, and it's
negatively impacting the team. This could be personal ("I can't stand working with
Fred") or it could be systemic ("I hate how we do code reviews"). Possible responses:

start by talking one-on-one to people involved. Ask them what's going on and what
can be done (by you or by them) to make things better. Flush out the problem and let
people vent. Seek out causes, not just symptoms (see "Conflict resolution and negotia

tion," later in this chapter).

Disagreement and conflict. People openly disagree about what should be done
(which can be healthy), but the disagreements are now preventing progress from tak

ing place. More time is spent debating and constantly revisiting what should be done,
instead of doing it. In extreme cases, different factions are secretly working in differ
ent directions. Possible responses: see the section "Conflict resolution and negotia

tion," later in this chapter.

Lack of faith. The team just doesn't believe in the project direction. They are doing

the work, getting along, and not actively disagreeing, but they think the ship is head
ing straight for the iceberg. Possible alternatives: see if they're right. If they're not, use

influence (see Chapter 16) to help build support behind the direction. Start small: who

has the most faith? How can you cultivate her belief and send it out to the rest of the

team? Try setting smaller goals for the team and building momentum. Go door-to-

door and ask for people's trust: "Look, I know you don't believe in this, but I do. Is

there any way I can convince you to get behind this? If not, is it possible for you to

trust me anyway, at least for the next week?"

WHAT TO DO WHEN THINGS GO WRONG 219

• Threats of mutiny. This is the violent, acute form of lack of faith. A moment is

reached where the team's threshold of frustration has been surpassed and they
respond poorly to every new problem that surfaces, no matter how small it is. More

so, people complain more about meta-problems (e.g., "Why does management/test/
marketing keep doing this?") than actual problems. If action is not taken, veterans

may support the complaints, and small or symbolic acts of subversion will start taking
place (e.g., certain bugs may become suddenly difficult to fix). Someone has to address
this head-on and defuse it. Publicly acknowledge the matter, make a list of all the
complaints, and visibly address at least some of the items from the list.

What can make these situations difficult is not the situation itself, but the context. The

later in the schedule a problem happens, and the weaker the morale of the team (or the

PM), the harder it is to deal with. Toward the end, there are fewer available moves to

solve the problem, and the stakes in making moves are much higher. Sometimes, this fact

makes it easy to end debates by pointing to the timeline. During end-game, many kinds

of issues become prohibitively expensive to change, and it becomes easier to argue for
living with the problem now and fixing it in the next release (or milestone). But note

that defaulting out of a problem doesn't solve it; it just means you have an easy path for

refusing to deal with the problem, which can be the right thing or the wrong thing for
the project.

It's important to realize that difficult situations often have fuzzy beginnings and

endpoints. No red warning light will go off on your desk telling you that morale is low or

that an oversight has just been made. You have to look for it, and even if you do, it won't

always be 100% clear what's going on. And then if there is a problem and you decide to

take action, you might only be able to mitigate it and minimize its impact—it might not

be entirely solvable. This means you have to manage minor issues caused by the problem

for weeks or even months on end. (For example, managing two programmers or testers

who just don't get along well. You can help patch things over, but you can't fix their

conflict completely.) So, part of what to do when things go wrong is to dedicate time for

maintaining chronic problems at a tolerable level. The more problems you're managing in

this way, the more time you'll need to dedicate to maintenance and damage control.

Make practice and training difficult

Good training for project managers must include exercises that simulate putting PMs into

these situations. I've learned that teaching people ideal cases might be the best way to

learn basic theories, but improving project management skill and making theories

understandable is achieved only by teaching failure and challenge cases. The most

successful courses I teach focus on situations and challenge exercises, rather than

formulas and concepts. Thinking cynically again, the challenge of managing projects isn't

220 CHAPTER ELEVEN

sailingin calm, open waters with clear skies. Instead, the challenge is in knowing how to

juggle, prioritize, and respond to all the unexpected and difficult things that you're

confronted with. (Although perhaps the ultimate skill for PMs is to change rough seas

into calm water before the team sets sail.)

So, if you work with or manage other project managers, and you don't have

opportunities for proper training, it's critical to use these difficult situations as learning
opportunities when they occur. As stressful and frustrating as they are, the experienceof
going through them is pure gold for the next project—if you take the time afterward to
review them. Stewart Brand once said, "In haste, mistakes cascade. With deliberation,

mistakes instruct."4 Even in the worst disaster, PMs still have control over how they

respond. And unless the situation is literallyfatal for the team, there is always the

opportunity to learn from something after it's happened.

Regarding other difficult situations: there are many different ways to break down the
possible problems you might encounter. If you're looking for bigger lists to learn from,

the best single source I've seen is Chapter 3 of Rapid Development, by Steve McConnell

(Microsoft Press, 1996). The second best source is the antipatterns catalog (http://c2.com/

cgi/wiki?AntiPatternsCatalog), which is actually a more interesting and colorful read, but it's
harder to apply and isn't consistently well written (which isn't surprising because it's a

wiki system).

Take responsibility
Taking responsibility for something doesn't make it your fault: it means that you will be

accountable for resolving the situation. Many people fear taking responsibility because

they don't want to be held accountable and put at risk for reprimand. A good manager

should have the opposite disposition: in matters involving his team, he should seek out

responsibility and use it to help the team and the project succeed. If relieving an engineer

or tester of fear of blame will get me a better solution, or the same solution faster, I'd

gladly take the trade. If my own manager is any good, taking responsibility for a problem

might earn me praise. By lending real responsibility to the problem, I instantly make the

problem less dangerous to the project (see the later section "Roles and clear authority").

This idea of taking responsibility can extend not just to blame or failure, but to all

relations with other people. As Larry Constantine wrote in Beyond Chaos: The Expert Edge

in ManagingSoftware Development (Addison-Wesley, 2001):

4 This is part of Brand's Pace Law. From Edge magazine's annual question, which, in 2004, was
"What is your law?" See http://www.edge.0rg/q2004/page6.html#brand.

WHAT TO DO WHEN THINGS GO WRONG 221

Instead of wondering why some person is so difficult, I find it more useful to ask
myself why I am havingdifficultly with that person. It is, of course, usually far eas
ier to spot the mote in a colleague's eye than to see the macaroni in your own, but
every frustrating encounter with a difficult personis an opportunity to learn more
about yourself. Overthe long term, you mayfindyourself meeting fewer and fewer
people who are difficult for you to handle.

This is especially valuable in difficult situations when other peoplemight be more
sensitive or prone to losing their tempers. If you can rely on your own maturity and
wisdom to overcome other people's fears or irrationalities, you become capable of leading
a project to success in spite of the frustrating or counterproductive behavior of others.

Taking responsibility, evenfor failures, isalways a growth opportunity. By volunteering
your own hide, you giveyourselfpower because you are placingyourself in the middle of
the situation. Deflecting blame or dodging responsibility might help you avoid the short-
term problem of cleaning up a mess, or answering to senior managers on a difficult
matter, but it also eliminatesany opportunity to learn something or to grow and
demonstrate yourabilities. You have to bewilling to getburnedifyou want to develop
the skill of putting out fires.

At a practical level, use your willingness to take responsibility to empowerothers during
crises. Add the following phrase to your playbook for working with others: "I'm not sure

how this happened, I don't care right now. We can sort it out later, and when we do, I'll

help take responsibility for what's happened. But because it did happen, we need to do X,
Y, and Z, and we need to do it now. Can you help me figure out how to do X, Y, and Z?"

Alternatively, in somesituations, the mostpowerful thing you can do is to give your
responsibility away. (In Chapter 12,I'll coverthe importance of trust and how delegation
is one major form of it that managerscan use to the project's advantage.) In tough times,
reconfirming your trust in someone's abilities might have more of a positive effect than
any intellectual or technical contribution you couldmake: "Sally, look. I trust you. I
know this issue is hard, but you're the expert. However you think we should deal with it

is the opinion I'll stand behind. But here's my feedback. Think it over. If you still
disagree, we'll go your way."

Damage control
If enough problems occur at the same time, or if somethingtruly devastating happens,
the first move must be damage control. This means that from the first moment onward,

your top priority is to return the project to an acceptable state. Imagine being the pilot of

a 747 that has just lost all engine power. Until you've restored power, not much else

matters. All of your energy is focusedon solving the one problem that all other problems
are dependent on. You're in damage-control mode.

222 CHAPTER ELEVEN

What pilotsand captainsare trained to do in damage-control situations is to diagnose the
problem, and try to isolate both the symptoms and the causes. Aircraft pilotsand
astronauts usually have a specific procedure for doing this for each major situation that
might occur (often these procedures are kept in a book because there are many of them).

The idea is that when the shit has really hit the fan, there won't be time to invent a

procedure—and maybe not even enough time to followone. So, when pilots do find
themselves in an emergency, they begin the diagnostic sequence and systematically work

at the problem until they find a resolution (or, if they fail, crash).

As a project manager, you will eventually find yourself in a damage-control situation.

There won't be time to explore alternatives or consider options. There will be something

very important that is very broken, and it won't be clear how it can possiblybe resolved.

To handle this situation, follow this list:

• Call an all-hands meeting. Word spreads quickly through a team when something
very important is clearly very wrong. The longer you wait to address it, the more dis-
sention and fear the team will have when you do. Take the bull by the horns and call
a meeting, or send high-priority email out to the team. Briefly explain the situation
and that you are working on it. If possible, explain what you're doing over the next 24
hours (see "Apply the rough guide," earlier in this chapter), and define the next point
in time when you will have an update. Don't hide from big problems: your team will
sense that something is wrong no matter how good you are at hiding it from them.

• If people are in disagreement, find the point of agreement. We'll cover this
more in the next section. But if you are in a room full of people who seem to only dis
agree about what's going on or what should be done, take control and reset the dis
cussion. Bring it back to the last point of agreement: "Do we all agree that our goals
are A, B, and C, and in that order?" Once you have a point of agreement, however

simple it is, work forward into the problems you're facing. Take issues one at a time

and don't allow the discussion to move past them until they've been resolved or

assigned to someone outside of the meeting who will drive them.

• What is the most recent known good state for the project and the team? If the

damage you're controlling is technical, go back through the daily builds (which you
should keep an archive of) to find the last good build. Put it on the table to reset the
project back to that state. This might be faster than continuing the project from the
state that it is in. Programmers can manually reapply changes that are lost, and you
can apply higher controls to eliminate the cause of the problem. This is a radical move,
but it assures stability and confidence at the expense of schedule time.

• Can the problem be isolated? Think of a boat that is currently on fire. Can the fire
be contained? Can the most critical parts of the ship be protected against the fire?

Think about how you can sequester the problem and prevent it from impacting the

most critical parts of your project. This may require sacrificing less important commit

ments or trading resources from one part of the team to another. It might require the

WHAT TO DO WHEN THINGS GO WRONG 223

short-term assistanceof other people from other areas to help isolate and contain the
problem, but because it will assure a stable state for the project, it's worth the tradeoff.

• Can resources be applied to help with the damage? In some cases, you can
spend your way (in terms of money or staff) out of a problem. Consider a real disaster
such as an earthquake or tornado: you could spend money to relocate the project or to
buy new equipment immediately to help keep the project alive while longer-term
solutions are found. If you discovera large gap in quality assurance coverage, you can
sometimes outsource for additional staff to cover currently unmanned test cases or
build processes. Throwing money or other resources at things can sometimes work if
your aim is good and it's the right kind of target.

Conflict resolution and negotiation
"What should worry us is not the number of people that oppose us, but how

good their reasons are for doing so."

—Alain de Botton

Settling differences is something managers must do all the time. The fact that negotiation

appears only in this chapter doesn't imply that having to resolve disagreements means

something has gone wrong. On the contrary, a healthy team should have enough

opinions that disagreements occur regularly. As long as people are respectfully debating

the merits of different ideas, disagreements provide alternative points of view and lead to

progress. What's important is how people treat each other when they disagree, how those

disagreements are resolved, and whether debates are converted into positive action.

That said, in times of crisis, the ability to resolve disagreements is essential. By far, the

best resource for learning the right attitude and skillsto do this is the short book Getting to
Yes, by Roger Fisher et al. (Penguin Books, 1991).51didn't find this book until later in my

career, and reading it gave me a better understanding of what happened in my previous

negotiating experiences. I realized negotiation took place in many different forms.

Sometimes, I was helping two people on the team resolve an issue. Other times, I was

one of the two people in disagreement, but without the benefit of a third party interested

in helping resolve the conflict, I was forced to act as negotiator. In all these cases, I found

one basic approach that worked for me, which I've outlined here:

• Find the point of unification. Two people, no matter how much they disagree,
agree about some things: the world is round, the sky is blue, the project needs to be on

time. Find the important points of unification and agreement and use those to start

any discussion you have. You want to start any negotiation with positive momentum.

5 Also see BargainingforAdvantage, by Richard Shell (Penguin Books, 2000). It provides more tac
tics and techniques than Getting to Yes, and it makes for a great second book.

22H CHAPTER ELEVEN

Address any contentious issues inside a framework of mutual interest and shared per

spective. Make a Venn diagram of things that interest party A and things that interest

party B, and note the intersections. If there are no intersections, something is missing:

why would they have any basis to disagree if they have no shared interests?

Recognize personality conflicts and then ignore them. It's very easy to fall into

the trap of allowing someone's personality traits to distract you from the goal of nego

tiation, especially if you are one of the two parties. Instead of trying to find situations

that benefit everyone, it's easy to slide into seeing negotiation as a competition: you

want to win, or worse, make the "opponent" lose. This is a complete distraction from

your real goals. If you find you don't like the person you're negotiating with, or the

people whose conflict you're trying to resolve, find a way to separate those feelings

from the task at hand (or delegate your role to someone else). Focus on how the

project is served by resolving the issue, and make that your motivation.

Look for mutual interest. If you lay out the possible ways to resolve a situation,

you will find choices that benefit both sides. They become visible by framing the dis

cussion around interests and not adversarial positions. A position is a set of specific

demands ("I will eat only chocolate cake"). An interest is a higher-level goal ("I want a

tasty and satisfying dessert"). Interests can be satisfied in many ways, but positions

have few solutions. Often, people who are in conflict are unaware of each other's

interests, and their energy is spent battling different positions. Yet, interests are easier

to work with than positions. Force people to talk about interests and reach agreement

(or at least understanding) at that level first, before discussing positions. List interests

for both sides and relate them back to the point of unification.

Be strong but supple. If you have a hard position that you need to maintain, look for

other, less-important positions you are flexible on. If you can't slip your dates, can you

change your features? If you can't give more time, can you give more money? Know

what points you are flexible on and can work with, and which ones are fixed. The bet

ter you understand the person you are negotiating with, the better you will be at offer

ing things that are of value to them, but cost you little. It's safe to say that if you are
flexible on nothing, you probably do not fully understand your interests (perhaps
because management has informed you only of their position, not of their interests).

Know the alternatives. Never enter negotiation without understanding what it will

cost you to walk away from the table, and what it will cost them to walk away from
the table. Getting to Yes calls this your BATNA—BestAlternative To Negotiated Agree

ment. The better your BATNA is relative to your counterparts', the more bargaining

power you probably have. For example, let's say you're stranded in the desert with a

dozen people, and you have the only gallon of fresh water. Fred offers $5 for it. You

could say no and find a better offer from the others, but Fred can only negotiate with
you. Fred has few reasonable alternatives, while you have many. Fred could be the

WHAT TO DO WHEN THINGS GO WRONG 225

best negotiator in the world, but this is irrelevant if you are aware of the superiority of
your options, relative to his.6

• Use persuasion and argument. In most cases, the interests and desires of both par
ties are based on subjective opinions about the relative value of things. This means
that if you can develop a true understanding of one party's feelings, you can possibly
persuade them that one aspect of the situation is more (or less) desirable than they
thought. Being persuasive is a skill: it combines charisma, communication abilities,

logic, and psychology—allthings that can be learned with experience and effort. Try to
be tactful when persuading others, and focus your efforts on the points most impor
tant to progress.

The art of negotiating is just a special form of discussion. Get the right people in the room

(see "Apply the rough guide," earlier in this chapter), set an agenda that includes

discussion of issues and interests, and then work to find possible alternatives that resolve

them. If the people in conflict are in the same organization, you can rely heavily on the

project's goals to frame what should be the highest-level interests for everyone involved

(the point of unification). Proposals and counterproposals are made until a resolution is

reached.

If the people in conflict are in two different organizations, things become more complex—

there may be less trust and weaker relationships between the people involved. The first

goal has to be to replicate something similar to project goals: why are we in business

together? What are the mutual beneficial reasons for us to exchange work or resources?

As a rule of thumb, this should be done when that relationship begins (contracts are a

simple form of this kind of agreement). It clarifies everyone's interests and provides a

baselineto refer to should conflicts or disagreements ariselater on (aswell as minimizing
the chances of those disagreements forming in the first place). But in lieu of a preemptive
agreement, it can be done after the fact. It will be more difficult to do because trust and

goodwill won't be high, but it's the only path toward finding a resolution.

Roles and clear authority
There are two lessons I learned from playing competitive sports. First, real trust is earned

only when challenges surface and are overcome. It's only when there is a dispute, where
someone is upset and the truth comes out, that relationships have the opportunity to

grow. Second, good teams function effectively because each individual understands his

own role as well as the role of every other person on the team. Things go well when each

6 Thisis where negotiationsbecomecomplex. If Fred doesn't believeyou're willingto use your
options, he will see your BATNA differently. He may tell you so ("Youwon't let me sit here and
die, will you?"). Negotiations become complex when people bluff, lie about their interests, or
lack trust in the other party. In less ridiculous situations, things tend to normalize as BATNAs
are executed. If a business really can get a better deal, eventually they will. If they can't, they'll
give in.

226 CHAPTER ELEVEN

individual can depend on the contributions of others to the point that he can comfortably

focus on his own tasks. A lead guitarist in a rock band can't do a great solo if the bassist

and drummer aren't providing a reliable rhythm structure for him to work in. It is the

same with forwards and point guards in basketball, or quarterbacks and offensive

linemen in American football. And, of course, it's definitely true for programmers, testers,

and others on technical teams.

The ability to depend on each other in team activity becomes more important as pressure

rises. Things are likely to break down, and people have the first opportunity to fail, feel

afraid, or blame others when things go wrong. Complex work is often highly

interdependent, meaning that Fred knows he will fail at completing his test pass if Sara

doesn't get her code working on time. He has good reason to worry: he hasn't worked

with her enough to build real trust in her ability to deliver in tough situations.

So, when the pressure is on, it's common to see immature teams struggle with their roles.

Individuals will question the ability of others on the team and do what they can to

protect themselves from the possibility of failures caused by others (often wasting energy

in the process). Even experienced people may do this if they are working on teams made

up of people who haven't built much trust in each other.

This means much of what the PM must do during tough times is reinforce the role

structure of the team. Remind everyone of what others are depending on them to do and

what they should be expecting others to do for them. As a leader, it's up to you to

identify those who are becoming rattled, and remind them of how confident you are in

the team. Be aware of who feels vulnerable, and work to change their perception.

Holding a team together is not something done with big speeches or grand gestures.

Instead, just go to people and make sure they feel connected to what's happening and

have what they need to believe they can contribute to it successfully.

In some cases, people need support to play their roles. The PM should back up people

who are trying to do their job but are receiving unfair questioning from others. Often,

this happens around role divisions, such as between programming and testing or

engineering and marketing. So, when you overhear an unfair comment, such as "My

god, Bob must be an idiot if he still hasn't finished that test pass," you should say, if

appropriate, "Steve, Bob is behind now because the dev team was behind all last week.

Maybe you can help him out like the test team helped you guys out back then, hmmm?"

Be the conscience of the team and keep people honest when necessary.

If there is real incompetence somewhere (i.e., Bob is actually an idiot), it's up to the PM

to engage managers directly, and make sure the problem is identified to those who are in

the best position to do something about it. (Base the feedback on the role the person is

supposed to be playing and what parts of it aren't happening. It may not be

WHAT TO DO WHEN THINGS GO WRONG 227

incompetence as much as a miscommunicationabout roles or commitments.) But most of

the time, the problems of a team under stress are communication, honest mistakes, lack

of trust, and role failures, not pure acts of stupidity or inaptitude.

Everyone should know who the decision maker is

In tough times there needs to be a clear line of decision-making authority. If the team is

deadlocked and a tough call has to be made in the next five minutes, with the fate of the

project hinged on the outcome, who should do it? In military organizations, the chain of

command exists to make sure the answer to this question is always clear. Because

decisions will be made under great stress and with short timelines, they need a

management structure that is indisputable and can be relied on to execute effectively,

regardless of how confusing a situation might be. Much of the training soldiers receive is

focused on trusting the chain of command. For projects, the rule of thumb should be as

follows: the more pressure and the higher the stakes, the less doubt there should be over

who has authority.

On projects, the chain of command for tough decisions should hinge on management—

most specifically, project management. If the challenge at hand involves business,

technical, and requirements issues, no one expert (marketing, engineering) is going to

have the best overall perspective. However, the PM, given the breadth of her

involvement in the project, has the strongest understanding of the different

considerations and possible impacts of these tradeoff decisions. If multiple people do PM

tasks, there simply needs to be a clear process for who decides what and who gets to be

involved. The role discussions described in Chapter 9 should include coverage of decision

making authority, and they can be used to clarify other authority issues.

But remember that the decision maker, whoever it is, always has the right to delegate or

collaborate. What's critical then is not that Bob or Michelle or Mr. VPmakes all the tough

decisions, but that everyone in the organization knows who to go to when certain kinds

of decisions need to be made, well before a crisisoccurs. This will increase the speed of

decision making on a team, which can stop minor threats from becoming major disasters.

An emotional toolkit: pressure, feelings
about feelings, and the hero complex
This last section of this chapter will cover emotion-related topics relevant when working

on teams where something has gone very wrong. My goal here isn't to provide you with

a treatise on stress management, but instead to provide a primer of issues you will face

and the considerations needed to overcome them.

228 CHAPTER ELEVEN

Pressure

The best definition I found for the word pressureis this:

Pressure (v): A compelling, constraining influence or force.

The key word here is constraint. To be under pressure means that there are constraints that

can't be moved and must be dealt with. This might be time, resources, the raw difficulty

of the situation, or all of the above. The existence of these constraints means that there

are fewer choices available and even less time to solve whatever the problem is.

But when people use the word pressure, as in "I'm under pressure," they mean there is

some perceived threat of failing to overcome the constraint. A pressure situation, such as

a political debate or taking a last-second game-winning shot, means that something

important is at stake that can easily be lost (or at least is believed to be so). There are

often other people involved who will suffer if they fail to succeed, amplifying the sense of

pressure on them.

What's important to realize about pressure is the different ways people respond to it.

Each individual has different sensitivities and will feel more or less pressure in different

situations. They will also have different ways of dealing or coping with it. For some, the

best release of pressure or stress is physical activity; for others, it's humor. But, sadly,

many people haven't yet figured out how to deal with these things.

During difficult situations, one additional task for leaders is to make sure there is support

for different kinds of stress relief. If the team witnesses the leaders poking fun at their

own stress responses ("When I get home, I'm grabbing a six-pack and taking the longest

bath in history"), it allows others to follow suit. If the lead programmer invites other

programmers to the gym (or the paintball arena) after work to blow off steam, others will

have the chance to see if that helps them with their stress. Even those who don't

participate will have the opportunity to consider what stress they're under and where the

best place might be to release it. On the contrary, if leaders are repressive and deny their

stress, pretending they don't feel it or don't need a form of release (typical stupid macho

behavior), they make life harder for everyone else. Never let your team think that the

need to release stress is a sign of weakness.

Watch out for the disguised threat, "Oh. Well, if you feel so stressed out that you need

relief, maybe you shouldn't be on this team." And avoid the dismissive ridicule, "Oh,

yoga? I guess that's OK if you need that much help." These come from managers who

don't know what's good for them. Stress relief is often cheap or free, and it has no

downside. Even if it doesn't help relieve stress, supporting people in pursuing it (or

making it available to them for free) provides morale bonus points. I've seen smart

managers bring massage therapists in during tough times, and go door-to-door, offering

WHAT TO DO WHEN THINGS GO WRONG 229

each person a 10-minute massage. It worked wonders: even those who didn't participate
talked about it for days.

Natural and artificial pressure

Pressure is a force that management controls. Management's artions change the nature of

pressure in several different ways, and managing a team through stressful times requires

an understanding of them. There are four types of pressure: natural, artificial, positive,

and negative (see Figure 11-1).

tfaJvraJ Artificial

Positive

fi/e$ative

FIGURE 11-1. The four kinds ofpressure.

I think of natural pressure as the feeling people have when a personally significant

commitment they have made is at risk ("Oh, wait. I told Sam I'd have the demo working

by 2 p.m."). If they believe in the commitment, and are emotionally invested in the

quality of their work, they will, all on their own, increase their focus and energy level in

response to pressure. I call it natural pressure because it comes directly from the work

and the person's relationship to the work. In this situation, all leaders need to do is guide

and protect that energy, and support the individuals on the team in their pursuit to meet

their goals. This kind of pressure is generally positive because personal motivation and

team needs are aligned. However, it can become negative if people feel guilt or shame

about failing to meet their commitments, especially if others are causing the problems

that led to those failures.

Artificial pressure is any tactic leaders perform to try and amplify the team's sense of

pressure. This can be both positive and negative. The positive form is reward driven,

where people are rewarded for working harder and raising their performance through

tough times (e.g., raises, promotions, bonuses). Or, the additional work could be

voluntary, where the leader asks (but doesn't demand) that the team work harder

(perhaps with incentives like expensing dinner for those who stay late, or letting more

people work from home). Sometimes, artificial pressure can take the form of a spirited

team meeting, where the positive spirit behind the project is rekindled (perhaps

generating some natural pressure for some of the team), and a new wave of energy is

cultivated.

230 CHAPTER ELEVEN

Negative forms of artificial pressure include scolding, guilt-tripping, or threatening as

ways to get people to work harder. Sometimes, this involves leaders blaming the team for

certain failures, and asking them to work harder to fix the problems that they may have

caused. This is the stereotypical drill sergeant mentality: the team needs to be constantly

disciplined and yelled at to perform at its best (or so the theory goes).

Most of the time, it's some combination of natural, artificial, positive, and negative forces

that managers use to keep a team performing well. As much as I prefer using positive

forces, sometimes it's only the careful use of negative forces that can bring a team around

and get it focused again. On the whole, it's a careful balance and there's no formula for it.

It's only through experience with managing teams, and observing human nature, that

you get better at applying these kinds of forces. You'll find that most experienced

managers have developed theories about the application of pressure. But all too often the

theories aren't derived from diverse enough experiences to justify the confidence people

have in them.

Formulations of pressure aside, it is clear that a team has limitations on how much

pressure it can handle. Figure 11-2 shows a diagram adapted from Volume 1, Systems

Thinking, of Gerald Weinberg's Quality SoftwareManagement (Dorset House, 1996). It

shows a performance curve for teams working under pressure. For a time, most people

and teams show improved performance as pressure increases. But over time, this

relationship diminishes and then flattens out completely. When a team is at its maximum

performance level (aka redlining or maxed), no amount of additional pressure will get

the team to work harder, better, or faster. If the application of pressure continues,

eventually the team (or individual) will snap and things will get much worse.

?**«»•**

FIGURE 11-2. There is a limit to the value ofpressure in increasing performance.

So, however you decide to use pressure to manage a team, be aware of the thresholds

that you're working in. If the team is unresponsive, it might be that you need to apply a

different kind of pressure, but it can also mean that the team is redUning, and no amount

of management activity will get it to perform any better. It takes experience to recognize

the difference. In short, people on a redlining team will have their heads down in the

hallway and won't be smiling much. They'll seem nervous and tired at the same time.

WHAT TO DO WHEN THINGS GO WRONG 231

They will wilt when asked to take on another task or make a minor change to something

already completed. It's much more expensive to recover from burnout than slow the

project down, so it's best to do the latter. Release some pressure by giving people an

afternoon off, playing an impromptu game of touch football in the parking lot, or

adjusting the workload or schedule to something sane.

Feelings about feelings

Before you skip past this section, assuming it's touchy-feely stuff that doesn't concern

you, let me ask one question. Have you ever wondered why people behave differently

under stress? If you don't care, or don't see the relevance to project management, feel

free to move on. But I pity anyone who works for you. (See, guilt-tripping has its place.)

OK, that was unfair, but it worked. To reward you, let me tell you a precious nugget

about human behavior. Virgina Satir, author of several books on psychology, has a simple

model for helping explain why people are unpredictable. Simply put, sometimes when

we feel a certain way (say, upset or hurt), we quickly have a second feeling about that

first feeling, and it's that second feeling that we tend to act on. For example, let's say I tell

you that you smell funny. This makes you feel sad. But perhaps you feel angry about the

fact that I made you feel sad. So, instead of expressing your feelings of sadness, all you

are able to do is express the secondary feeling of anger (Figure 11-3 shows a simple

example of this). Later on, you might get around to realize the core feeling was sadness

and then feel sad, but in the moment, it's all about your feelings in response to other

feelings.

The -Pee/in^ a.kov4
The fee/in* 4he<Peeli»z

FIGURE 11-3. The Satir model explains that the feelings we act on are not necessarily the core feelings

we have.

In Volume 1, Systems Thinking of QualitySoftware Management, Weinberg goes on to

explain that Satir's model has other useful implications. Often, what causes that second

feeling is a belief that we've been taught, which isn't consistent with healthy emotional

behavior. Feeling angry about feeling sad is not a universal behavior for human beings:

it's learned. In fact, according to Weinberg, our responses to many emotions are simply

what we were exposed to in our own emotional development.

232 CHAPTER ELEVEN

The funny thing about childhood development is that we all get hand-me-down belief

and emotional systems. Most of the behaviors we follow are learned from our parents,

who learned their behaviors from their parents, and so on. Until someone stops and

examines the value of their behaviors and emotional responses, independent of where

they learned them from, it's difficult to grow in emotional maturity—or even to know

how emotionally mature and healthy we are. And worse, we potentially pass destructive

or confused behavior on to others (e.g., our students, coworkers, friends, and children).

Some of the rules we learned might be good, and others might be bad. But simply

because we historically respond in a certain way to something doesn't mean those

responses are healthy for us or useful for making progress happen.

The lesson here for PMs is that sometimes the emotions you receive from people you are

working with will not be related directly to the actions you have taken. You may point

out a bug in someone's code and he'll get upset at you, even though you were polite and

pointed out something important.

What you want to prevent from happening is a cascade of these nondirectly related

feelings. Imagine if, in Figure 11-3, someone else responded to an expression of feeling B

with a statement reflecting feeling C, further obscuring the real cause of the whole

situation (feeling A). It's entirely possible to end up with a meeting of five people, all

arguing and yelling, yet no one is in the same emotional context: they're all expressing

and responding to different feelings about the actual topic of discussion (for example,

think of your last family reunion).

Other notable writers on human emotion, such as Leo F. Buscaglia or John Bradshaw, go

on to point out that the healthier and more emotionally mature a person is, the more

aware he is of his own emotions and those of others, giving him a wider range of choices

for how to respond to the emotions of others.7 This implies that a leader in a crisis

situation has better odds of success if she can see emotional patterns and make use of

different ways to manage them.

The hero complex

There is one special kind of person when it comes to dealing with pressure: the person

who has a hero complex. This is any individual who compulsively creates dangerous

situations simply so he can resolve them. He may so depend on the thrill and challenges

of extremely difficult situations that he will not do very much to prevent trouble from

starting in the first place. In the minor form, it's simply someone who likes working in

7 For an informal introduction to basic emotional dynamics, try Leo F. Buscaglia's wonderful
Living,Loving&Learning (Ballantine Books, 1985). For a more formal introduction, try Bradshaw
On: TheFamily, by John Bradshaw (Health Communications, 1990).

WHAT TO DO WHEN THINGS GO WRONG 233

risky situations. In the major form, a person with a hero complex may be putting the

project at risk, or even trying to sabotage it.

When things go wrong on a project, people with hero-complex tendencies will thrive.

Whereas some people wilt or shy away from stepping into the fire, these people jump

right in, as if the project is finally getting interesting to them. Having people on the team

with minor forms of the hero complex is great because they seek out fires and put them

out, but they will rarely cause fires of their own. It's the full-blown cases of hero complex

that you have to watch out for because their behavior may deliberately cause the project

to become unstable. Or more commonly, they will fight to the death against actions that

will make high-risk situations impossible.

The hero complex most commonly develops in people who started their careers in start

ups or very small (volatile) firms. Heroic and superhuman efforts are often required just

to make ends meet because such organizations rarely have enough resources to match

their ambitions.8 If things work out well, the survivors look on their heroic efforts as a

large part of why they succeeded. In that original context, they're right. However, there

are bad habits hiding behind this logic: just because heroics were needed in situation A

doesn't mean heroics are needed, or even beneficial, in situations B, C, and D.

The hero complex has several motivating beliefs, which are explained or refuted in the

following list:

• Planning is unnecessary: I've proved it. Because the hero has experience succeed

ing without specs or schedules, he believes those things are never necessary. This

belief fails because of how different projects can be. A 5-person, 1-month project has

fundamentally different constraints and risks than a 200-person, 12-month effort. It

may demand different approaches to management, planning, and engineering. Part of
this (flawed) belief is the notion that the hero has experienced everything there is to

experience about software development. This hubris blinds him from the specific prob
lems in each project that demand a unique balance of management, process, and team
structuring to resolve. Always and neverare not valid answers to the question of when

a process is necessary—it always depends on the details of the project.

• I work for me alone. The most selfish motivating force for hero behavior is simply
that the hero likes being the hero. She likes it so much that she doesn't care what gets
put at risk or destroyed in the process of her playing the role. Symptoms of this are

destructive competition with peers or an indifference to the work of others (or even

the goals of the project). She may not realize that her desire to be the hero has any

possible implications (those downsides are largely for other people, not for her). In

8 A more favorable way to look at start-ups is that the creative force needed to innovate comes
only from a small, tight group of people working hard. A "shortage" of people is desirable
because it gives everyone tremendous autonomy. Hackers andPainters by Paul Graham (O'Reilly,
2004) makes interesting arguments about the rewards and risks of start-up work.

23H CHAPTER ELEVEN

some cases, she may not even understand why her heroic efforts aren't always received

in the way she expected. ("Didn't I rescue the cute, fuzzy animals from getting burned

when I ran into the building to save them?" "Yes, but you also set the fire.")

• The pseudo-hero. I've seen this only a handful of times. The idea is that by making

management think something is much worse than it is, and then, magically, making it

much less worse than it seemed, an individual can cultivate the perception of being

very good at whatever he does (our hero!). The more ignorant or uninterested man

agement is, the easier this is to do. It tends to work only a few times before peers or

others catch on. This isn't exactly the hero complex because the person in question

doesn't actually want to do heroic things, he just wants to be perceived as being heroic.

• Heroes have their foolish kings. Most of the situations that create heroic opportu

nities are management failures. If the project is weeks behind, or bad strategy choices

force huge design changes, only management is responsible. Sometimes, you will see

codependent relationships between management and engineering, where manage

ment depends on engineering heroics to cover (and hide) their mistakes. So, instead of

admitting to their own failings, they depend on rewarding the brilliant, but possibly

avoidable, heroic work of the engineering team. Meanwhile, engineering loves the

thrill of those problems and doesn't really want management to get better at planning

or managing risk, despite how often they complain about management. An entire

codependency culture is created, which depends on heroes and rewards both the cre

ation of risks and their resolution.

• The failure complex. This is different from the hero complex but is related enough

to make it onto this list. Some people don't feel comfortable unless there are things to

complain about. When presented with a challenge, they feel more comfortable find

ing excuses for failing and convincing people of their validity, instead of investing that

energy in rising to the challenge and trying to succeed. They prefer to blame rather

than to win. These folks come in clusters from bad teams (or families) where blame

and denial were more important than anything else. They need someone to demon

strate for them that there's a healthier way to go about living.

The best way to minimize the risks of hero culture is to have an active management

team. If someone believes that the difference is important, it's easy to tell whether an 80-

hour workweek is the result of a truly heroic crisis response or a self-inflicted chain of

incompetence. As a PM, you may not have enough influence to make the team aware of

its hero-driven habits, but the only way to know is to try (see Chapter 16).

It's only by someone calling attention to this behavior that there is any possibility of it

changing. Minimally, push hard for a policy of review around heroic acts. Whenever a

hero does her thing, there should be a public discussion of what could have been done to

avoid it in the first place. Credit can be given to the hero, but rewards should also be

distributed for those who find a way to prevent that kind of situation from occurring

again in the future.

WHAT TO DO WHEN THINGS GO WRONG 235

Summary
• No matter what you do, things will go wrong.

• If you can stay calm and break problems down into pieces, you can handle many diffi

cult situations. (Remember the rough guide.)

• There are some common situations to expect, which include oversights, being forced

to do stupid things, resource shortages, low quality, direction changes, personnel

issues, and threats of mutiny.

• Difficult times are learning opportunities. Make sure you and your team take the time

to examine what happened and how it could have been avoided.

• Taking responsibility for situations, regardless of who caused them, always helps to

expedite resolving the problem.

• In extreme situations, go into damage-control mode. Do whatever it takes to get the

project to a known and stable state.

• Negotiation is useful not only in a crisis situation, but also in management. Good

negotiators work from people's interests, not their positions.

• Have clear lines of authority at all times. People should know who has decision

making power before a crisis occurs.

• People respond to pressure in different ways. Be observant and open in how you help

the team deal with the different kinds of pressure.

Exercises

A. Walk around the office and find five things that could go wrong. For each, describe

how you'd handle the problem if you were charged with fixing it. Who would need to

be in the room to fix the problem? What would you do to fix the problem? What

would you do if you were not in a position of authority?

B. Pick a project you were involved in before, in a role other than program manager, that

went off the rails. Who needed to be involved to fix it? Who needed to be told about

how you were going to fix it? Who needed to be told afterward? What was done well?

How could it have been handled better? What could you change in your organization

to reduce the chances of it happening again?

C. You are the program manager for a contractually obligated but internally disfavored

software development project. One of your lead engineers, who used somewhat

gnarly code that few people could understand, was laid off without warning. Your

schedule has not changed. How would you manage the situation?

D. You are the CEO of a Fortune 500 company. CNN informs you that in one hour, a

videotape will be broadcast in which several of your company's vice presidents will be

heard making offensive comments about other employees, the company in general,

and your leadership abilities. What do you do?

236 CHAPTER ELEVEN

E. You are the projert manager for an upcoming Xbox game, with a $20 million budget

to support 50 staff and all the project's expenses for the 12-month schedule. To speed

completion, you made a decision to buy a component for the project, rather than

developing internally. Half way through the projert you learn, from a reliable source,

that the vendor will probably have to delay their delivery date by a year; however, the

vendor has not actually told you this yet and insists that everything is fine. Tomorrow

you are scheduled to present a project review to your executives. How do you handle

this potential crisis?

F. You are the director of FEMA (Federal Emergency Management Agency). A major

American city has just been flooded by the catastrophic failure of an upriver dam. Fifty

thousand people are stranded in (and on top of) houses and offices, with no power, no

way to get power, and declining food supplies. Your communication network is not

working. What do you do?

G. One week into development, space aliens attack your office and your entire

programming staff is hit with an alien space ray that makes them 50% less talented.

You are the only witness to the event, as the ray erased the staff's memory of the

event. What do you do with your schedule? Do you fire the staff? How honest would

you be with your managers or clients?

H. What was the biggest crisis you've dealt with at work or in your life? What emotions

did you go through and how did they impact how you handled the situation? Were

you aware of how you were feeling in the moment, or only afterward? What does this

suggest about how you handle crisis?

I. Here is a hypothesis: if you work on a project where nothing has ever gone wrong, it

means one of two things: either you are doing work that is too easy for you, or things

are going wrong, but you are ignoring them. What is your opinion?

WHAT TO DO WHEN THINGS GO WRONG 237

m
&&^

•&&M

Sfe

CHAPTER TWELVE

Why leadership is based on trust

I have had more than a dozen managers. Many were forgettable and some were awful.

But those I admired took time to earn my trust. They wanted my best work, and they

knew this was possible only if I could rely on them on a daily basis. This didn't mean

they'd do whatever I asked or yield to my opinions by default, but it did mean that their

behavior was predictable. More often than not they were up front with me about their

commitments, motivations, and expectations. I knew where I stood, what my and their

roles were, and how much support was available from them for what I needed to do.

As a leader on a team, everything depends on what assumptions people can make of you.

When you say "I will get this done by tomorrow" or "I will talk to Sally and get her to

agree with this," others will make silent calculations about the probability that what you

say will be true. Over time, if you serve your team well, those odds should be very high.

They will take you at your word and place their trust in you.

Although movies portray leadership as a high-drama activity—with heroes running into

burning buildings or bravely fighting alone against hordes of enemies—real leadership is

about very simple, practical things. Do what you say and say what you mean. Admit

when you're wrong. Enlist the opinions and ideas of others in decisions that impact

them. If you can do these things more often than not, you will earn the trust of the

people you work with. When a time comes where you must ask them to do something

unpleasant or that they don't agree with, their trust in you will make your leadership

possible.

This implies that to be a good leader, you do not need to be the best programmer,

planner, architect, communicator, joke teller, designer, or anything else. All that is

required is that you make trust an important thing to cultivate, and go out of your way to

share it with the people around you. Therefore, to be a good leader, you must learn how

to find, build, earn, and grant trust to others—as well as learn how to cultivate trust in

yourself.

Building and losing trust
Trust (n): Firm reliance on the integrity, ability, or character of a person.

"Trust is at the core of all meaningful relationships. Without trust there can be

no giving, no bonding, no risk-taking."

— Terry Mizrahi, Director of Ecco (Education Centerfor Community Organizations)

As an experiment, I asked a sampling of acquaintances who they trust in their current

places of work, and why. The answers were roughly the same: trust is earned by people

who do their jobs well, are committed to the goals of the project, treat people fairly, and

2H2 CHAPTER TWELVE

behave consistently through tough times. Not a single person mentioned whether they

liked these people or would want to invite them over for dinner. It seems that trust cuts

beneath other personality traits. We can trust people we do not like or do not wish to

spend time with.

Unlike other attributes about people, trust has little to do with personal preference. We

don't choose who to trust on the basis of superficial things. Instead, there is a deeper set

of calculations we make about who we can depend on. If I asked you who you would

trust to save your life in a dangerous situation, you would pick people very differently

than if I asked you who you'd want to go to the movies with. There is no obligation for

personal chemistry and reliability to be connected to each other in any way.

But to examine trust in the context of projects, we need to break down the concept into

workable pieces. One simple unit of trust is a commitment. A commitment, or promise, is

the simplest kind of contract between two people about something they both agree to do.

Trust is built through commitment

When you make a new friend, and he tells you he'll meet you somewhere, you take it on

faith that he'll be where he says, when he says. But if two or three times in a row he

stands you up, and you end up watching a movie or standing in a club alone, your trust

in him will decline. In effect, he's broken his commitments to you. If it continues, your

perception will change. You will no longer see him as reliable, and you will question your

trust in him in matters of importance.

According to Watts S. Humphrey's Managing the Software Process (Addison-Wesley

Professional, 1989), one of the central elements of well-managed projects is the leader's

ability to commit to her work, and to work to meet her commitments. Humphrey

believes this is so important that he precisely defined the elements of effective

commitments. His list, with a few modifications, follows.

The elements of effective commitment

1. The person making the commitment does so willingly.

2. The commitment is not made lightly; that is, the work involved, the resources, and the

schedule are carefully considered.

3. There is agreement between the parties on what is to be done, by whom, and when.

4. The commitment is openly and publicly stated.

5. The person responsible tries to meet the commitment, even if help is needed.

6. Prior to the committed date, if something changes that impacts either party relative to

the commitment, advance notice is given and a new commitment is negotiated.

WHY LEADERSHIP IS BASED ON TRUST 2H3

There are two things of particular interest here. First, commitments work in two ways.

The two people involved are mutually committed. If Cornelius commits to Rupert that he

will walk Rupert's dog while he's out of town, both parties are bound to respect the

other's interests. Cornelius should never have to travel the 25 city blocks to Rupert's

apartment, intending to walk Rover in Central Park, only to find Rupert lying on the

couch watching television ("Oh, sorry. I meant to call you yesterday—my trip was

canceled."). Each party's trust is granted to the other in a trust exchange, and the

expectation is that the trust will be respected—not violated or forgotten. Allowing

someone to waste his time or money is a violation of trust.

Second, we make commitments all the time. In every conversation we have in which we

ask or are asked to do something, and agree to a timeline for it, we're making a

commitment. This includes simple statements such as, "Hey, I'll call you after lunch" or

"I'll read that draft by tomorrow." Two people may have different ideas on how serious

the commitment is, but there is rarely any doubt that some kind of commitment has been

made. The less seriously we take our commitments to others, the greater the odds their

trust in us will decline. There are different levels of commitment (e.g., if you forget to call

your wife one afternoon, she won't assume this means you want a divorce), but they all

connect together and contribute to our perceptions of others' trustworthiness.

Trust is lost through inconsistent behavior

Getting back to projects, people fracture trust when they behave unpredictably. When

someone consistently takes action without regard to her commitments, she creates waves

of concern that disturb the team. Energy is taken away from people who have to work

(or contend) with her. Instead of applying their energy toward completing work, they

now have to expend energy calculating whether she will actually do what she says she

will. Contingency plans have to be devised, and levels of stress and doubt rise ("If Maria

doesn't get that code checked in by the end of today, we're hosed."). The more careless

someone is with the responsibility she has, the larger the waves will be.

One interesting (albeit painful) story about failed trust involves one of my former

managers. I was a program manager working with five programmers and testers, and we

got along well. Jake, the team lead, was my manager and had authority over me and

several other PMs. The problem was Jake's habit of changing his mind. For example, he

and I would discuss big decisions I was making that needed his support. We would come

to quick agreement on the best approach. But then as soon as we entered a meeting

where strong personalities or people with equal or more seniority than Jake disagreed

with him, Jake, in dramatic fashion, would cave in (he did this about one-third of the

time, but I never knew which third). He'd run the other way and agree with whatever

decision was popular.

2«W CHAPTER TWELVE

I remember standing at the whiteboard during meetings, halfway through explaining my

plan A, when he'd agree to someone's suggestion to go with plan B. I'd stop and stare at

him, amazed that he could do this without feeling a thing. Had he really forgotten? Was

he this much of a brown-noser? Was he unaware of what he was doing to me? Or was

this weathervane-like behavior (following the wind of the room) really beyond his

control? I didn't have the skills then to sort it out, and I wasn't savvy enough to talk to

others about the behavior I experienced, so I suffered. My workouts at the gym were

never so good.

Eventually, I discussed this behavior with him. I also documented decisions we'd made as

soon as we made them (email is good for this), and I used them later on for reference. I

even went so far as to prep him right before meetings. But all this only made for minor

improvements (instead of supporting plan B, he'd just stay out of the discussion, but not

help with plan A). I soon found myself working around him. I'd go out of my way to

have things decided in meetings without him present. By comparison, it was less work

and more effective. This created other problems on our team (and with my relationship

with Jake), but I was able to manage my areas and get things done.

The sad thing was that Jake was smart and fun to work with. But because I couldn't trust

him, it didn't matter. He would have been more useful as a manager if he were less

smart, but twice as trustworthy. We certainly would have made better products, and I

would have spent less energy managing him and more energy helping the team.

Make trust clear (create green lights)
The good managers I've had made trust explicit. They told me, flat out, that I had the

authority to make decisions for my areas of responsibility, provided I had the support of

my team. They (my managers) would identify specific things they were concerned about

and ask me to check in with them on those points. They'd ask me what I needed from

them, and we'd negotiate to see if they could provide it to me. Otherwise, they directed

me to focus on making things happen, instead of seeking anyone else's approval.

Imparting trust, the real meaning of delegation, is a powerful thing. Some sports have

specific lingo around this kind of delegation of authority—for example, getting the "green

light" in basketball.

Years before I played basketball in high school, I played on Coach Rob Elkins'1 team at

the Samuel Field Y, in Douglaston, New York. He pulled me aside one day during

practice, which usually meant it was time for a reprimand. I'd been goofing off during

practice, pulling down other players' shorts so that they couldn't get back on defense.

1 Rob and Eric from the Samuel Field Yin Douglaston, New York taught me so much more about
coaching and managing than the high school and college basketball coaches I had later on. If
you know these guys, please tell them to get in touch with me.

WHY LEADERSHIP IS BASED ON TRUST 2H5

When I sat down, I hung my head low, just in case. But he said nothing. We sat for long

moments and watched the rest of the team scrimmage on the court. Finally, he said,

"Scott, you have the green light." I looked at him. "Green light?" I asked. "Yes" he

replied, smiling, but not looking at me. "OK, Coach," I said, and ran back out on the

floor. Though few people ever hear these words, somehow all players know what they

mean. Whereas players are normally obligated to shoot the ball only in accordance with

whatever play the coach calls, the green light meant exemption. I could shoot the ball

whenever I thought appropriate—I could supersede any play and exercise authority

when I thought necessary.

A large amount of trust is imparted in telling a player something like this, which is

precisely why most players go their entire career and never hear it. (I continued to play

basketball in high school and on Division III college teams, but I never heard it again and

hadn't heard it before.) Coaches are generally terrified to give up any authority. Much

like managers, they feel their power is tenuous. Standing on the sidelines (or sitting alone

in a corner office) is a vulnerable place to be. Many managers and coaches fear what will

happen if they grant their team additional freedoms. They forget that they can always

adjust levels of trust; had I misused the trust Coach Elkins put in me, nothing prevented

him from taking some of it back (change the green light to yellow). More important,

perhaps, is that the level of trust managers are afraid to give is often the precise amount

that their team requires to actually follow their manager's leadership.

It's safe to say I played harder for Coach Elkins than for any other coach I had. I

instinctively felt that I now had a higher bar to live up to (although in one game I took

seven jump shots in a single quarter, and missed them all, which I'm sure was some kind

of club record for both attempts and misses). I also worked with more intensity for

managers who imparted similar amounts of trust in me than for those who did not. It

wasn't because I liked them (although that helped). It was because I was granted the

space to thrive. It's the transfer of trust that creates true empowerment because it gives

people the room to work closer to their peak performance.

If maximum potential for success is your goal, you have to look for ways to give people

green lights. It's the manager's job to create opportunities for her team, as well as help

her team have the strength and preparation to take on those opportunities.

The different kinds of power
There are two models of power that I'll use in this book. The advanced form will come

later, in Chapter 16. For now, I'll stick to the simple, but potent, form of functional

power.

2H6 CHAPTER TWELVE

Functional power comes in two flavors: granted and earned. Granted power comes

through hierarchy or job titles (sometimes called ex officio or "of office" power). For

example, the coach of a basketball team has the power to decide which players will be in

the game and which ones stay on the bench. Or the boss of a small sales office might

have the power to hire and fire anyone he chooses. But this power doesn't have anything

to do with how much respect people have for the person wielding it, or even how much

skill and knowledge people feel the manager has. In contrast, earned power is something

that has to be cultivated through performance and action. Earned power, or earned

authority, is when people choose to listen, not because of someone's granted authority,

but because they think he is smart or helpful.

Do not rely on granted power
"I distrust all systemizers and avoid them: the will to a system

is a lack of integrity."

— Nietzsche

The use of granted power as a primary force in leadership limits relationships. It excludes

the possibility of exchanging ideas, and it places the focus on the use of force, rather than

smarts. While there are situations when use of autocratic power is required, good leaders

keep that sword in its scabbard as much as possible. As soon as you draw it, no one is

listening to you anymore—they're listening to the sword. Worse, everyone around you will

draw their own swords to respond (and their swords may be better than yours). Instead of

explaining to you why you are wrong, they will use their own granted power to challenge

your power. This results in a competition of forces that has nothing to do with intelligence

or a search for the best solution. Granted power (like the "dark side of the force") is

temping because it's easier: you don't have to work as hard to get what you want.

I once faced a situation that put me at the crossroads of granted and earned power. It was

during Internet Explorer 2.0, when I had my first major program management

assignment. The first day I was introduced to the two programmers who I'd be working

with, Bill and Jay. Jay was friendly, but Bill was quiet and intimidating. He was also very

senior in the organization (a level 13 in the Microsoft jargon of the time, which meant he

was about as senior as a programmer could be). I remember sitting in his office, looking

at him across his desk. I'd been talking for 10 minutes and he'd said next to nothing. He

just leaned back in his chair and stared at me.

I tried going to the whiteboard to see if that would help get Bill talking. No effect. He

spoke up only to say sarcastic or ambiguously disconcerting things, like "Oh, is that so?"

and "Wow...interesting you would think that." He was just toying with me, like a cat

with a half-dead mouse. You see, I was just an arrogant 23-year-old; I had no idea what I

was doing, despite how convinced I was that I could fake it. Bill, on the other hand, was

a seasoned veteran who had gone through this routine dozens of times before. In fact,

WHY LEADERSHIP IS BASED ON TRUST 2H7

I'm sure there were only two thoughts running through his mind: "How on earth did I

get stuck with the new guy?" and "Is he the first or second most stupid person I've ever

met?" The encounter ended with me babbling in a "straight from the HR training video"

sort of way about how great it was going to be to work together. (I'm sure this confirmed

for him that I was, in fact, worthy of first place.)

At the time, a friend (another PM) gave me this advice: lay down the law. I should tell

Bill that because I was the PM, and he was the programmer, he should do what I said

regarding high-level decisions. This fit the Microsoft mythology of PMs ("get in my way

and I will kill you") that I'd heard about, and so I rallied up the courage to go try and live

up to it. But before I drew my sword and charged up the hill, I chatted with my manager.

Between good-natured laughs, he said not to do anything so rash. He reminded me that

Bill was smart and knowledgeable about his areas, and I should find a way to make use of

that. He also added that working with Bill would be, as he put it, "good for me." Trusting

my manager, despite his laughter, I put my sword away and approached the problem

from the standpoint of getting as much value out of Bill as possible.

Work to develop earned power

Over the weeks that followed, I slowly earned Bill's trust. It was painful at first. In the

process of getting him to help me, I had to prove what I was capable of and build from

the small to the large. I found that when I acknowledged he knew more than I about

something, good advice came from him more easily. When I made commitments and

followed through, he became more generous. I had to make good decisions, and defend

my points of view with good arguments, but eventually we developed a solid working

relationship. Bill granted me authority to make decisions that impacted him significantly.

He just needed me to first demonstrate that I was worthy of his confidence.

Had I exercised whatever granted power I had during those early days, I would have lost

any chance at earned power. Bill might have yielded to me on that first day, but because

he would be responding only to my power, it would be difficult to move past that and on

to more collaborative ways to work together. And if I continually relied on using power

(which is what tends to happen when you start using power), it would have become less

effective over time. Every time a manager or leader says, "Because I say so," they are

ending discussions and shutting off the potential for better opinions. Any smart or

passionate people around them will not be contributing their best work and won't be

happy about their limited roles.

From an organizational standpoint, autocratic behavior pushes strong thinkers away. It

simultaneously encourages those comfortable with being told what to do to stick around.

Tyrants create environments that only minions could tolerate, and vice versa. Worse,

tyrants create other tyrants beneath them. These patterns of behavior (granted power or

nothing) get passed down through organizations, eventually poisoning them.

2«*8 CHAPTER TWELVE

Persuasion is stronger than dictation

In managing others, I learned that I was more effective at making good things happen if I

convinced people to do something before making them do it. Any idiot can use tyrannical

power and demand specific kinds of behavior—it takes no skill. But to convince an

intelligent person (or group of people) that something they initially didn't want to do is

right, good, or even perhaps in their interest, is much more powerful. When they are

hours into the work, and begin to question why they're doing it, they can't blame you.

They'll be able to rely on their own intelligence, influenced by your arguments, for why

they are spending their time doing what they're doing.

Eventually, people listened to me because of their confidence in my ability to have good

reasons for my opinions. They'd ask fewer questions and take on trust that I had thought

through my request of them before I'd made it. They had fewer fears about my taking

advantage of them because they had so many experiences where the interests of the

project and the team motivated my behavior. The more people trust you, the easier it

becomes to persuade them. Like with Bill, over time, I spent less and less energy

convincing people of things—even though that's where I started my relationships with

them—and more and more time getting things done.

Be autocratic when necessary

Granted power does have its place. When things get out of control, granted power can be

the fastest way to achieve order. If a meeting is falling apart, big commitments are being

broken, or other fundamental problems are occurring, use the sword. If you're convinced

that the use of direct power is the only real possibility of a successful outcome, regardless

of the consequences, by all means make use of it. Be clear, be direct, and use the

executive authority you have to move the project forward.

However, the more it's used, the more it covers for fundamental organizational problems.

If the only way to make it through the week is to yell your way through meetings or bark

orders in cubicles, it means the project vision, organization structure, or your leadership

ability needs to be examined.

Trusting others
The larger an organization becomes, the more common it is to rely on granted power.

There is greater fear among leaders about how to keep the masses working together (or

perhaps, to prevent a revolution), and there is the belief that there isn't time to engage

everyone in the organization in a kind of discussion and communication that requires

using earned authority. Even on small teams, I know some leaders who don't believe

they have the energy or time to engage all of their key contributors in this kind of

leadership style. The solution to this problem is another kind of trust, called delegation:

trusting others to make decisions.

WHY LEADERSHIP IS BASED ON TRUST 2H9

Authority and trust often accumulate around different tasks or areas of knowledge. Joe

might have the most authority when it comes to C++ objects, and Sally might be the best

person for database work. Healthy, communicative teammates trust each other enough to

know when someone else has more skill or a better perspective, and then solicit that

person's advice without fear of embarrassment or ridicule. This is a real fear because

engineering disciplines have ripe cultures of passive-aggressive behavior around asking

for help (i.e., rtfm). Even in computer science departments in college, self-reliance is seen

as a core competency, and students asking peers for help is often considered a sign of

weakness.

From a project perspective, Sally's authority on database design is only as good as its

application to the project. If she sits alone in her office, and no one enlists her authority

to help solve problems, then Sally's authority is squandered, or at best, limited to the

tasks Sally is doing on her own. A key responsibility of a project leader or manager is to

model the delegation and sharing of knowledge for the entire team. If they do it right, the

rest of the team will have a much easier time following along.

Delegation of authority

Traditionally, delegation is used to describe the act of handing off specific tasks or

responsibilities. I think a more powerful form of delegation is when decisions, or the

ability to influence decisions, are distributed. This can happen in meetings or group

discussions. When the leader or manager is asked "So, how are we going to solve this

problem?", he has the chance to hand that power over to someone else. "Well, Sally,

you're our best database designer. What do you think we should do here?" As long as

this isn't done unfairly (say, in the middle of a tense VP review meeting, during a failing

demo, when Sally has no idea she's going to be expected to answer any questions), this

sets a tone of collaboration. People can be free to acknowledge each other's expertise, and

they will yield authority appropriately. Of course, for the project manager, nothing is

risked. If Sally's suggestions aren't good, the discussion continues. But without that first

question, the discussion may never happen at all.

Of course, delegation also extends to explicit handoffs of authority. By publicly declaring

that a work area or feature is going to be managed by someone, a manager transfers her

authority to that person. It's important that delegations are done with enough visibility

that everyone who needs to see the transfer actually sees it. Any time I handed off

responsibility to someone who worked for me, I made sure to contact every programmer

or tester who would be affected so that they would know that whatever power and

authority I had for that work would be transferred to someone else. Of course, sometimes

people don't want to see things delegated, and it's the leader's job to use her power to

enforce it.

250 CHAPTER TWELVE

John, a project manager on my team, was ready to take on more responsibility. So, when

the time came to reorganize the distribution of work on my team, I was able to give him

an area I had been responsible for in the past. After the appropriate discussions with John

and Steve (the programmer on the area), I handed the responsibility off to John. A week

later, Steve came into my office asking for PM help with the area. While I listened, I tried

to figure out why he was talking to me and not John. I interrupted him: "Steve, why are

you talking to me about this?" "Well Scott, you used to own this, didn't you?" "Yes

Steve, but John owns it now. Did you talk to him?" He shrugged. "Steve, go talk to

John," I said. "He's smart. He's good. Trust him." Steve came back a few days later, and

we had a shorter version of the same conversation. But after that, I never heard from

Steve again (at least not about this).

John probably never knew about this and never needed to. Steve preferred working with

me for some reason, and he wanted to continue our relationship despite the change in

ownership. But to delegate, I had to get myself out of the discussions. I could probably

have answered Steve's question myself, and I might have enjoyed it, but I'd be betraying

my own decision to delegate. Until I had a reason to get involved in that area of the

project, I had to trust John and Steve to do their jobs, which included using Steve's trust

in me to convince him to trust John.

Many managers have trouble delegating. They rose in seniority because of their ability to

get work done on their own, and leading requires a different balance of skills than being

an individual contributor (see the section "The balancing act of project management" in

Chapter 1). These managers are usually held back by the fear that they don't have

enough control. Of course, this is a trap because if that fear drives their decisions, they

can never learn to trust anyone, and without trust, leadership is impossible.

Sometimes the solution is a compromise. The manager just has to discuss, with the

member of her team at the moment of delegation, what considerations the delegate is

expected to make. ("John, I'm worried about Steve. He's been late on every estimate. So,

pay extra attention to that, OK?") By setting expectations around assignments, leaders

transfer some of the experience and guidance, and probably increase the odds of success.

Trust is insurance against adversity
As we discussed in the last chapter, all projects will have things go wrong. Competitors

have a habit of not doing what you expect them to (that's their job), technologies come

and go, and important people change their minds. As a project manager, it's guaranteed

that things will happen that were not predicted or accounted for. In tough or uncertain

times, you want your team or your peers to be able to rely on you and trust in each

other.

WHY LEADERSHIP IS BASED ON TRUST 251

If trust has been cultivated and grown over time, and people have experience making

decisions with each other (instead of in spite of each other), the project will be highly

resilient to problems. When people believe in the team, they can summon forms of

confidence and patience that aren't available through other means. Like soldiers in a

foxhole, each person can rely on someone else to watch his back, freeing him to give

more energy to the task ahead.

When a team trusts each other, it also buys the project manager time to focus on solving

the problems at hand, instead of trying to calm down the hallways of panicked or

frustrated employees. Sometimes the leader might need to ask for this kind of support

explicitly. He has to demonstrate the respect he wants from the team by acknowledging

the problem and asking, but not demanding, their support. (Yelling "Support me now!"

doesn't work.) On the whole, it's connections between people that get them through

tough times: not their salaries, not the technologies they work on, and certainly not how

much power an individual does or does not have.

So, the wise leader, like a ship's captain, knows that unseen storms and dangers lurk

across the sea, and he gets himself and his crew ready as best as he can against what he

cannot prepare for. If uncertainty is guaranteed, the project manager's best investment is

likely to be having a strong network of trust between him and everyone who's

contributing to the effort. On larger teams, more time should be spent building trust on

the relationships that are most critical to the project or most likely to fail under stress.

While specs, vision documents, and other tools do help bind people together, it's the trust

in the people behind those things that carries the real power.

Models, questions, and conflicts
The golden rule—do unto others as you would have them do unto you—applies to

managers. No decree from leaders is ever followed as well as the ones they follow

themselves. Humans are social creatures, and we learn behavior throughout our lives,

predominantly on models from others. We often learn best by seeing someone we respect

or admire do something, and then try, consciously or subconsciously, to emulate that

behavior. As a matter of trust, it's up to leaders of projects to demonstrate the behavior

they ask for in the people they work with. Michael Jordan, among his other qualities,

developed a reputation for an intense work ethic. Even though he was the highest-paid

and most well-known basketball player in the NBA, there were few who worked as hard

as he did. This eliminated any possibility of lesser players asking to sit out of practice or to

spend less time in the gym. The leader set a model that others would need to follow.

Work ethic aside, the golden rule for leaders is that they trust their own judgment

enough to follow the same rules as everyone else (see "Trust in yourself (self-reliance),"

later in this chapter). Doing this means allowing others, peers or subordinates, to

252 CHAPTER TWELVE

question or challenge the leader's judgment or behavior. If someone has been granted

power, there needs to be some kind of feedback loop for challenging it (i.e., who is

permitted to say the emperor has no clothes?). Good leaders trust their teammates

enough to—on occasion, perhaps in private—ask for feedback on their behavior and

performance. Of course, there's no obligation for the leader to take action on the

feedback or even to comment on it, but it's hard to imagine success occurring if there is

no healthy and safe path for this kind of information to reach the project manager.

Leaders define their feedback process

People are hesitant to give feedback to authority figures. As a manager, I made a habit of

asking people who reported to me, during weekly one-on-one meetings, if they had

anything they wanted me to think about, regarding my work, my behavior, or my

performance. It was rare that they'd say anything, although I knew this wasn't because I

was a perfect manager (there are no perfect managers). I found the only solution was

trust and time. I had to be persistent in creating the confidence they would need to feel

comfortable critiquing my behavior—without them worrying about me becoming

defensive or reprimanding them for their comments. Eventually they'd offer a small

criticism, and if I handled it well, they'd offer more next time.

But once I had established a feedback loop with them, I learned that their perspective

was much more useful toward me becoming a better manager than the feedback I

received from my own boss. I certainly didn't have this kind of relationship with

everyone, but most people, sooner or later, answered my questions with useful feedback.

A suggestion for running a meeting differently, a question about a decision I'd made, or

any other comment guaranteed that the ensuing discussion helped us both to feel better

about whatever the thing was.

Every time I was in a discussion, I tried to expose the difference between criticizing an

idea and criticizing the person who came up with the idea.2 Just because person A

disagrees with something person B says doesn't mean person A is judging person B. I

wanted the team to feel that they trusted each other enough to say what they thought

and openly disagree without apologizing. A sense of humor helps in making this possible,

and it starts with the leader demonstrating when sarcasm or mockery are appropriate,

perhaps by using himself as the target of the jokes. But my main point is that the leader

has to demonstrate the behavior himself, rein in people who go too far, and reach out to

those who struggle to get involved.

2 See "How to give and receive criticism" at http://www.scottberkun.com/essays/35-how-to-give-and-
receive-criticism/.

WHY LEADERSHIP IS BASED ON TRUST 253

This extends to conflicts and disagreements. Granted and earned authority don't help if

they just sit quietly on their asses while bad things are happening. There are few better

uses of power than to interrupt stupid arguments and to take the floor away from people

who abuse it. When differences of opinion slide into ad hominem attacks, or the use of

bogus arguments to justify decisions, someone has to interrupt and raise the bar. By not

tolerating that behavior, everyone gets the same message at the same time: don't try that

kind of cop-out again because we don't accept it here.

Of course, it follows through the golden rule that the true leader needs to prepare herself

for the possibility (or perhaps inevitability) that others will challenge her own bogus

arguments, if she should try to use them. The best leaders are the ones who take pleasure

in the team being so committed to its intellectual standards that it's not afraid to question

even the leader's behavior.

Trust and making mistakes
It's easy to trust people when they succeed; managing people's mistakes is much more

complicated. This is where managers earn their pay.

I know from my own experience that every time someone showed up at my office door

with a problem he caused, I'd try (but not always succeed) to maintain three thoughts:

1. I'm glad he's coming to me about it. I'd rather he come to me instead of hide it or try
to solve it on his own and make it worse. I should let him know this right away.

2. How can I help fix this problem? Is it even fixable? What are the options? How

involved should I be? I should give him as much advice as he needs, but, if possible,

have him carry out what needs to be done. However, I have to make sure he's not in

over his head. Sending him into battle with a 99% certainty of instant death isn't

exactly good management practice.

3. I need to make sure that if there is a lesson here, he'll learn it.3 Mistakes are where

real learning happens because the mistake maker has a personal and emotional

investment in what happened, and he will have tremendous motivation not to repeat

it (especially if he feels that the team trusts him).

If you ask any wise masters of any discipline for their great lessons, they will tell stories

about how they screwed something up, probably an important thing, and finally learned

a better way to go about doing whatever it was. It follows that to become great, you not

In many military organizations, only situations described as incidents or missions require
debriefings. So, if something stupid happens, and it's not really anyone's fault and the impart is
minimal, there might be no lesson at all, and it's not worth the effort to make a big deal out of
it. In fact, the best response might be to express that your approval isn't needed for similar minor
issues in the future.

254 CHAPTER TWELVE

only need to make mistakes,4 but you need someone to give you the opportunity to do

so. Managers earn their pay when they manage problems because they not only have to

help in the recovery, but because they also have to lead the process of converting the

mistake into a lesson for the team to learn from.

Good management is about giving people as much responsibility as their abilities allow,

but somehow never letting them feel that they are working alone, or that they have your

support only when things are going well. It makes sense that the potential to make

mistakes is the exact same potential needed to contribute and succeed. This means it's

unfair to pin people to the wall for errors in judgment or for problems that arise from

decisions they've made.

Instead, the ideal environment to create is one where people are comfortable being

ambitious, but will admit to and take responsibility for their mistakes. They should feel

trusted enough to want to learn as much as they can so that it won't happen again. If the

team collectively shares this culture, it becomes self-correcting. When there is a healthy

system for recognizing, responding to, and learning from mistakes, over time fewer of

them tend to happen (or when they do, they are dealt with quickly), and people are

more confident taking all kinds of action in the nonmistake majority of their time.

Never reprimand in real time

The worst thing in the world, especially during a crisis, is for a manager or leader to

reprimand someone while the issue is still unresolved. It solves nothing, and it minimizes

the probability that the problem will be solved because the person who knows the most

about the issue (the blamed) is made to feel guilty and defensive. Imagine that someone

who worked with you ran into your office screaming, "My office is on fire! My office is

on fire!", and all you could offer was, "Gee, that was stupid. Why did you do that? I'm so

very disappointed in you." Managers do this all the time, and it's hard not to wonder

why. My theory is that some people believe, due to osmosis from bad managers or

parents, that the way to start fixing issues is by pointing fingers and distributing blame. Of

course, making people feel bad and establishing who should feel the worst does nothing

to improve the situation (knowing who started the fire doesn't often help put it out).

Instead, it's the time after the issue has been resolved, when heads are cool and the

pressure is off, that there is every opportunity to come back and figure out what

happened and why, and what are the resulting lessons for the individual, the leader, and

the team.

4 See "How to learn from your mistakes" at http://www.scottberkun.com/essays/44-how-to-learn-from-
your-mistakes/.

WHY LEADERSHIP IS BASED ON TRUST 255

Trust in yourself (self-reliance)
"To thine own self be true, and it must follow, as the night the day,

thou canst not then be false to any man."

— Shakespeare, Hamlet

The last point about the relationship between leadership and trust is for you to learn to

trust in yourself. This is a matter of philosophy and goes beyond the scope of this book.

However, I have enough trust in both of us that we can cover some important ground in

this short section.

If you look at high school and college curriculums in the United States, there is one class

that you will not find: how to figure out who you are. This is very strange. For a nation

that places primary importance on individuality and freedom, the U.S. doesn't do very

much to teach its citizens about self-discovery, much less self-reliance. Self-discovery is

the process of learning about who you are as an individual, independent from your

friends, family, employer, or nation. Self-reliance is the ability to apply your individuality

to the world, based on a framework of emotional, physical, and financial support for

yourself. It doesn't mean you have to live naked in the woods, living off the land. But it

does mean that you can look inside yourself and find strength to make choices you

believe in, even if others do not agree with those choices.

"Believe nothing, no matter where you read it or who has said it, not even if I

have said it, unless it agrees with your own reason and your own common sense."

— Buddha

Leadership, in the traditional sense, demands that individuals have some sense of self-

reliance. You can take a risk or make a tough choice only if you have an inner compass

guiding you toward what you think is right. Without self-reliance, all of your decisions

will be based heavily on the opinions of others, or your desire to please them, without

any centering force to guide those influences. Tom Peters, John P. Kotter, and other

authors call that centering force a value system. They suggest that a set of values can act

as your core, or an organization's core, guiding you through difficult situations. This

approach can work, but I'm suggesting something deeper and more personal.

Self-reliance starts by trusting your own opinions—it's possible for you to believe

something is true, even if others do not. Differing opinion should negate yours only if

you consider it and, in thinking through it on your own, change your mind. Otherwise,

there is no reason to give up your opinion on a subject (you might still give in on a

decision, yielding your authority to theirs, but this doesn't require you losing your own

opinion). Your beliefs should be self-sufficient. If you were to change your mind only

because other people think differently than you, you'd be committing an act against

trusting yourself. Betraying trust in yourself can be just as dangerous as betraying trust in

your team.

256 CHAPTER TWELVE

For the brave, self-reliance goes further. Not only do you trust your own opinions, you

trust your core enough to allow your opinions to change, and even to admit to your

mistakes. Without change and the occasional struggle, we can't learn or grow. But if you

do trust yourself, you'll recognize that you are still you, even when you fail or grow into

new ideas. Emerson wrote: "A foolish consistency is the hobgoblin of little minds." He

meant that keeping the same ideas just for the sake of keeping those same ideas makes

no sense. A wise person should be learning more all the time, which will require him to

develop new ideas and opinions, even if they contradict ones he had in the past. If you

lead an active intellectual and emotional life, your ideas will grow with you.

This means a self-reliant person can be confident in herself, while finding ways to let

others influence her and help define her vision of the future, allowing all kinds of

positive changes. You are free to make mistakes, admit to them, and change your mind,

without violating your own identity.

So, if you can learn to trust yourself in these ways, you will, as a by-product of your

leadership role, help others learn to trust themselves. No act of delegation in the worlds

of projects or human psychology is more powerful than helping people believe in their

own ability to become more self-reliant.

I recommend the essay "Self-Reliance" by Ralph Waldo Emerson. It's available in most

editions of his collected works, or it can be found online at http://www.emersoncentral.com/

selfreliance.htm. The best general book on self-discovery is Chop Wood, Carry Water, by Rick

Fields (Jeremy P. Tarcher, 1984). For the philosophically adventurous, try reading Albert

Camus' TheMyth of Sisyphus (Vintage, 1991).

"It is only as a man puts off all foreign support, and stands alone, that I see him

to be strong and to prevail.... Hewho knows that power is inborn, that he is

weak because he has looked [only] for good out of him and elsewhere, and so

perceiving, throws himself unhesitatingly on his thought, instantly rights

himself, stands in the erect position, commands his limbs, works miracles; just

as a man who stands on his feet is stronger than a man who stands on his head."

— RalphWaldo Emerson, from "Self-Reliance"

Summary
• Trust is built through effective commitments.

• Trust is lost through inconsistent behavior on matters of importance.

• Use the granting of authority and trust to enable people to do great work.

• Granted power comes from the organizational hierarchy. Earned power comes only

from people's responses to your actions. Earned power is more useful than granted
power, although both are necessary.

• Use delegation to build trust on your team and to ensure your team against adversity.

WHY LEADERSHIP IS BASED ON TRUST 257

• Respond to problems in a way that will maintain people's trust. Support them during

crises so that they bring issues to you instead of hiding them.

• Trust in yourself is the core of leadership. Self-discovery is the way to learn who you

are and to develop healthy self-reliance.

Exercises

A. Make a list of the five people you work with most often. Who do you trust most and

why?

B. Is there a risk-free way to earn someone's trust? Can you play it safe in a relationship

and simultaneously make it deep and trustworthy?

C. Of the managers you've had in your life, which ones relied on granted power and

which on earned power? How did this relate to their performance?

D. Think of the big commitments people have broken with you. What impact did this

have on your relationship with them? Did you ever discuss what happened? What

commitments have you broken with teammates? Is there any way to recover from a

broken commitment?

E. How did your manager respond the last time you made a mistake? How does this

differ from how you handled the last time someone who works for you made a

mistake?

F. As an exploration into self-reliance, what decision have you fought for despite its

unpopularity? Can you think of moments when you knew the right thing to do—and

did it—even though you knew others would criticize you?

G. When was the last time you changed you mind about something important? Make it

your goal to change your mind about something in your life. Invite your team or a

group of friends to lunch, and tell them you'll pay the check if they can change your

mind about something.

H. Research the leadership styles of any two of the following leaders: Gandhi, Abraham

Lincoln, Alexander the Great, Napoleon, Genghis Kahn, Queen Elizabeth I, Nelson

Mandela. Who would you rather work for? Why? What techniques did they use to

earn (or manipulate) the trust of their followers? How much granted and earned

authority did they have?

I. Can leadership be taught or is it instinctive? Make a list of traits that make for being a

good leader (reuse anything you wish from this book or start from scratch). Score each

trait from 1-9:1 being purely instinctive, 9 being purely teachable.

258 CHAPTER TWELVE

CHAPTER THIRTEEN

Making things happen

o ne myth of project management is that certain people havean innate ability to do it
well, and others donot.Whenever this myth came up in conversation withotherproject
managers, I alwaysasked for an explanationof that ability—how to recognize and
develop it in others. After debate, the onlythingwe identified—after many of the other
topics coveredin this book—is the ability to make thingshappen. Somepeopleare able to
applytheir talents in whatever combination necessary to moveprojectsforward, and oth
ers cannot, even if they have the same individual skills. The ability to makethings hap
pen is a combination of knowing how to be a catalyst in a variety of different situations
and having the courage to do so.

This is so important it's used as a litmustest in hiringprojectmanagers. Even if PMs can't
precisely define the ability, they do feel that they can sense it in others. Forexample,
manyhiring managers askthe question aboutcandidates: "Ifthings were not going well
on an important project, would I feel confident sending this person into that room, into

that debate, and believe he'd find a way to make it better, whatever the problem was?" If
after a round of interviews the answer is no, the candidate is sent home.* The belief is

that if he isn't agile enough to adapt his skills to the situations at hand, he won't thrive

on a typical project. This chapter is about the ability to make things happen.

Priorities make things happen
Much ofmytime as a PM was spent making ordered lists. Anordered list isjust a column
ofthings, put in order ofimportance. I'mconvinced that despite all the knowledge I was
expected to have, in total, all I really didwas make ordered lists. I collected things that
had to be done—requirements, features, bugs, whatever—and put them in an order of
importance to the project. I spentdays refining and revising these lists, integrating new
information, discussing them with others, always makingsure they were rock solid.
Then, once we hadthat list inplace, I'd lead theteam as hard as possible to follow things
in the defined order. Sometimes, these lists involved how myowntime should be spent
on a givenday; other times, the lists involved what entire teamsofpeoplewould do over
months. But the process and the effect were the same.

I invested so much time in these lists becauseI knew that having clear priorities was the
backbone ofprogress. Making things happen depends on havinga clearsenseof which
things are moreimportant than others and applying that sense to every single interaction
that takes place on the team. These priorities have to be reflected in every email you send,
question you ask, and meeting you hold. Every programmer and tester should invest

energy in the things that will most likely bring about success. Someone has to be dedicated

to both figuring out what those things are and driving the team to deliver on them.

1 Thebar wasnot "Canthispersondo everything?", but "Will thispersonknow when to seekout
help for situations that are beyond him?" This is just another kind of situation to deal with.

260 CHAPTER THIRTEEN

What wastes the most time on projects is confusion about which things should come

before which other things. Many miscommunications and missteps happen because

person A assumed one priority (make it faster), and person B assumed another (make it
more reliable). This is true for programmers, testers, marketers, and entire teams of

people. If these conflicts can be avoided, more time can be spent actually progressing

toward the project goals.

This isn't to say those debates about priorities shouldn't happen—they should. But they

should happen early as part of planning. If the same arguments keep resurfacing during

development, it means people were not effectivelyconvinced of the decision, or they

have forgotten the logic and need to be reminded of why those decisions were made.

Entertain debates, but start by asking if anything has changed since the plans were made

to justify reconsidering the priorities. If nothing has changed (competitor behavior, new

group mission, more/fewer resources, new major problems), stick to the decision.

If there is an ordered list posted on the wall clarifying for everyone which things have

been agreed to be more important than which other things, these arguments end quickly

or never even start. Ordered lists provide everyone with a shared framework of logic to

inherit their decisions from. If the goals are clear and understood, there is less need for

interpretation and fewer chances for wasted effort.

So, if ever things on the team were not going well and people were having trouble

focusing on the important things, I knew it was my fault: either I hadn't ordered things

properly, hadn't effectively communicated those priorities, or had failed to execute and
deliver on the order that we had. In such a case, working with prioritization and ordered

lists meant everything.

Common ordered lists

By always working with a set order of priorities, adjustments and changes are easy to

make. If, by some miracle, more time or resources are found in the schedule, it's clear

what the next most important item is to work on. By the same token, if the schedule

needs to be cut, everyone knows what the next least important item is and can stop

working on it. This is incredibly important because it guarantees that no matter what

happens, you will have done the most important work possibleand can make quick

adjustments without much effort or negative morale. Also, any prioritization mistakes

you make will be relative: if work item 10 turns out to have been more important than

work item 9, big deal. Because the whole list was in order, you won't have made a

horrible mistake. And besides, by having such clear priorities and keeping the team

focused on them, you may very well have bought the time needed to get work item 10

done after all.

MAKING THINGS HAPPEN 261

For most projects, the three most important and most formal ordered lists are used to

prioritizeproject goals, features, and work items (seeFigure 13-1). The project goalsare
typically part of the vision document (see Chapter 4) or are derived from it. The lists of

features and work itemsare the output of the design process (see Chapters 5, 6, and 7).
Because each of these lists inherits priorities from the preceding list, by stepping up a
level to reach a point of clarity and then reapplying those priorities back down to the

levelin question, any disputes can beginto be resolved. Althoughthis may not always
resolve debates, it will make sure that every decision was made in the context of what's

truly important.

lis-f of oaJ Lis4 of fea.t\jre% Li%4 of yjork i4em%

FIGURE 13-1. The three most important ordered lists, shown in order.

Other important thingsthat mightneed ordered lists include bugs, customersuggestions,
employeebonuses, and team budgets. Theycan all be managed in a similarway: put
things in the order most likely to make the project or organization successful. No matter

how complex the tools you use are (say, forbugtracking), never forget that all you're
doing is ordering things. If the tools you use don't help you put things in order, find a
different tool. Bug triage, for example, where people get in a room and decide when a
bug should be fixed (ifat all), is reallyjust a group process for making an ordered list of
bugs. Thebugsmight be classified by group rather than on an individual bug-by-bug
basis, but the purpose and effect are the same.

If you do use the three most commonorderedlists, make sure that they always map to
each other. Everyengineeringwork item shouldmap to a feature, and every feature
should map to a goal. If a new work item is added, it must be matched against features
and goals. Thisis a forcing function to prevent random features. If a VP or programmer
wants to slip something extra in, she should be forced to justify it against what the

project is trying to achieve: "That's a great feature, boss, but which goal will it help us

satisfy? Either we should adjust the goals and deal with the consequences, or we

shouldn't be investing energy here." If you teach the team that it's a rule to keep these
three levels of decision making in sync, you will focus the team and prevent them from
wasting time.

262 CHAPTER THIRTEEN

Priority 1 versus everything else

These ordered lists have one important line dividing them into two pieces. The top part is

priority 1: things we must do and cannot possibly succeed without. The second part is
everythingelse. Priorities 2 and 3 existbut are understoodto be entirely differentkinds
of things from priority 1. It is very difficultto promote priority 2 items to priority 1.

This priority 1 line must be taken veryseriously. You shouldfight hard to make that list
as small and tight as possible (this applies to any goal lists in the vision document as

well). An item in the priority 1 list means "We will die without this." It does not mean
things that are nice to have or that we really want to have; it gives the tightest, leanest
way to meet the project goals. For example, if we were building an automobile, the only
priority 1 things would be the engine, tires, transmission, brakes, steering wheel, and
pedals. Priority 2 items would be the doors, windshield, air conditioning, and radio
because you can get around without those things. The core functionality of the

automobile exists without them; you could ship it and still call it a car.

Putting this line in place was always difficult, with long debates over which things
customers could live without. This was fine. We wanted all of the debating to take place

early, but then move on. Aspainful as it would be, when we were finished, we'd have a
list that had survived the opinions and perspectives of the team. We could then go

forward and execute, having refutations and supporting arguments for the list we'd

made. Havingsharpened it through debate and argument, we were ready for 90% of the

common questions or challengespeople might have later on (i.e., why we were building
brakes but not air conditioning) and could quickly dispatch them: we'd heard the

arguments before, and we knew why they didn't hold up.

The challenge of prioritization is always more emotional/psychological than intellectual,

despite what people say. Just like dieting to lose weight or budgeting to save money,

eliminating things you want (but don't need) requires being disciplined, committed, and
focused on the important goals. Saying "stability is important" is one thing, but ranking it

against other important things is entirely different. Many managers chicken out of this
process. They hedge, delay, and deny the tough choices, and the result is that they set

their projects up to fail. No tough choicesmeans no progress. In the abstract, the word
important means nothing. Usingordered listsand defending a high priority 1 bar forces

leaders and the entire team to make tough decisions and think clearly.

Clarity is how you make things happen on projects. Everyone shows up to work each day

with a strong sense of what he is doing, why he's doing it, and how it relates to what the

others are doing. When the team asks questions about why one thing is more important

than another, there are clear and logical reasons for it. Even when things change and

priorities are adjusted, it's all within the same fundamental system of ordered lists and

priority designations.

MAKING THINGS HAPPEN 263

Priorities are power

Have you everbeenin a tough argument that youthought would neverend? Perhaps
halfthe engineers felt strongly forA, and the other halffelt strongly for B.But then the
smartteamleader walks in, asks some questions, divides the discussion in a new way,
and quickly gets everyone to agree. It's happened to me many times. When I was
younger, I chalked this up to brilliance: somehow that manager or lead programmer was
just smarter than the rest of the people in the room,and saw things that we didn't. But as
I paidmore attention, and on occasion evenasked them afterward how they did it, I
realized it was about having rock-solid priorities. They had an ordered list in their heads

and wereable to get other people to frame the discussion around it. Good priorities are
power. They eliminate secondary variables from the discussion, making it possible to
focus and resolve issues.

If you have priorities in place, you can always askquestions in any discussion that
reframe the argument around a more useful primary consideration. This refreshes
everyone's sense ofwhat success is, visibly dividing the universe into two piles: things
that are important and things that are nice, but not important. Here are some sample
questions:

• What problem are we trying to solve?

• If there are multiple problems, which one is most important?

• How does this problem relate to or impact our goals?

• What is the simplest way to fix this that will allow us to meet our goals?

• If nothing else, you will reset the conversation to focus on the projectgoals, which
everyone can agree with. If a debate has gone on for hours, finding common ground is
your best opportunity to moving the discussion toward a positive conclusion.

Be a prioritization machine

Whenever I talked with programmers or testers and heard about their issues or

challenges, I realized that my primary value wasin helping them focus. Myaim was to
eliminatesecondary or tertiary thingsfromtheir platesand to help them see a clear order
of work. There are 1,000ways to implement a particular web page design or database
systemto spec, but only a handful of them willreallynail the objectives. Knowingthis, I
encouraged programmers to seekme out if they ever faced a decision where they were
not sure which investment of time to make next.

But insteadof micromanaging them ("Do this. No do that. No, do it this way. Are you
done yet?How about now?"), I just madethem understand that I was there to help them
prioritize when they needed it. Becausethey didn't have the project-wide perspective I
had, my valuewasin helping them to see, evenifjust for a moment, how what they

264 CHAPTER THIRTEEN

were doing fit into the entire project. When they'd spent all day debugging a module or
running unit tests, they were often relievedto get some higher-level clarity and
reassurance in what they were doing. It took only a 30-second conversation to make sure

we were all still on the same page.

Whenever new information came to the project, it was my job to interpret it (alone or

through discussion with others), and form it into a prioritized list. Often, I'd have to

revise a previous list, adjusting it to respond to the new information. A VP might change

her mind. A usability study might find new issues. A competitor might make an

unexpected change. Those prioritizations were living, breathing things, and any changes

to our direction or goals were reflected directly and immediately in them.

Because I maintained the priorities, I enabled the team to stay focused on the important

things and actually make progress on them. Sometimes I could reuse priorities defined by

my superiors (vision documents, group mission statements); other times, I had to invent

my own from scratch in response to ambiguity or unforeseen situations. But more than

anything else, I was a prioritization machine. If there is ever a statue made in honor of

good project managers, I suspect the inscription would read, "Bring me your randomized,

your righteously confused, your sarcastic and bitter masses of programmers yearning for

clarity."

Things happen when you say no
One effect of having priorities is how often you have to say no. It's one of the smallest

words in the English language, yet many people have trouble saying it. The problem is

that if you can't say no, you can't have priorities. The universe is a large place, but your

priority 1 list should be very small. Therefore, most of what people in the world (or on
your team) might think are great ideas won't end up matching the goals of the project. It

doesn't mean their ideas are bad; it just means their ideas won't contribute to this

particular project. So, a fundamental law of the PM universe is this: if you can't say no,

you can't manage.2

Saying no starts at the top of an organization. Senior managers determine whether

people can actually say no to requests. Despite what the priorities say, if a team leader

continually says yes to things that don't jive with the priorities, others will follow.

Programmers will work on pet features. PMs will add (hidden) requirements. Even if

these individual choices are good, because the team is no longer following the same rules

nor working toward the same priorities, conflicts will occur. Sometimes, it will be

disagreements between programmers, but more often, the result will be disjointed final

designs. Stability, performance, and usability will all suffer. Without the focus of

2 For addition discussion on saying yes and no, see Richard Brenners' essay, "Saying No: A Short
Course" at http://www.ayeconference.com/Articles/Sayingno.html

MAKING THINGS HAPPEN 265

priorities, it's hard to get a team to coordinate on makingthe same thing. The best leaders
and team managers know that they have to lead the way in saying no to things that are
out of scope, setting the bar for the entire team.

When you do sayno, and makeit stick, the project gains momentum. Eliminating tasks
from people's plates gives them more energy and motivation to focus and work hard on

what they need to do. The number of meetings and random discussions will drop and
efficiency willclimb. Momentumwillbuildaround saying no: others willstart doingit in
their own spheres of influence. In fact, I've asked team members to do this. I'd say, "If
you ever feel you're being asked to do something that doesn't jivewith our priorities, say
no. Or tell them that I said no, and they need to talk to me. And don't waste your time
arguing with them if they complain—point them my way." I didn't want them wasting
their time debating priorities with people because it was my expertise, not theirs. Even if

they never faced these situations, I succeeded in expressing how serious the priorities
were and how willing I was to work to defend them.

Master the many ways to say no

Sometimes, you will need to say no in direct response to a feature request. Other times,

you'll need to interject yourself into a conversationor meeting, identify the conflictwith
prioritiesyou've overheard, and effectively say no to whatever was being discussed. To
prepare yourself for this, you need to know all of the different flavors that the word no

comes in:

• No, this doesn't fit our priorities. If it is early in the project, you should make the
argument for why the current priorities are good, but hear peopleout on why other
priorities might make more sense.Theymight have goodideasor need clarityon the
goals. But do force the discussionto be relative to the project priorities, and not the
abstractvalue of a feature or bug fix request. If it is late in the project,you can tell
them they missedthe boat. Even if the priorities suck, they're not goingto change on
the basis of one feature idea. The later you are, the more severe the strategyfailure
needs to be to justify goal adjustments.

• No, only if we have time. Ifyou keepyour priorities lean, there willalways be
many very good ideas that didn't make the cut. Express this as a relative decision: the
idea in question might be good, but not good enough relative to the other work and
the project priorities. If the item is on the priority 2 list, convey that it's possible it will
be done, but that no one should bet the farm assuming it will happen.

• No, only if you make <insert impossible thing hero happen. Sometimes, you
can redirect a request back onto the person who made it. If your VP asks you to add
support for a new feature, tell him you can do it only if he cuts one of his other cur
rent priority 1 requests. This shifts the point of contention away from you, and toward
a tangible, though probably unattainable, situation. Thiscan also be done for political

266 CHAPTER THIRTEEN

or approval issues: "If you can convince Sally that this is a good idea, I'll consider it."
However, this can backfire. (What if he does convince Sally? Or worse, realizes you're

sending him on a wild goose chase?)

No. Next release. Assuming you are working on a web site or software project that
will have more updates, offer to reconsider the request for the next release. This
should probably happen anyway for all priority 2 items. This is often called postpone

ment or punting.

No. Never. Ever. Really. Some requests are so fundamentally out of line with the
long-term goals that the hammer has to come down. Cut the cord now and save your
self the time of answering the same request again later. Sometimes it's worth the

effort to explain why (so that they'll be more informed next time). Example: "No,
Fred. The web site search engine will never support the Esperanto language. Never.

Ever."

Keeping it real
Some teams have a better sense of reality than others. You can find many stories of

project teams that shipped their product months or years late, or came in millions of

dollars over budget (see Robert Glass' Software Runaways [Prentice Hall, 1997]). Little by

little, teams believe in tiny lies or misrepresentations of the truth about what's going on,

and slide into dangerous places. As a rule, the further a team gets from reality, the harder

it is to make good things happen. Team leaders must play the role of keeping their team

honest (in the sense that the team can lose touch with reality, not that they deliberately

lie), reminding people when they are making up answers, ignoring problematic

situations, or focusing on the wrong priorities.

I remember a meeting I was in years ago with a small product team. They were building

something that they wanted my team to use, and the presentation focused on the new

features and technologies their product would have. Sitting near the back of the room, I

felt increasingly uncomfortable with the presentation. None of the tough issues was being

addressed or even mentioned. Then I realized the real problem: by not addressing the

important issues, they were wasting everyone's time.

I looked around the room and realized part of the problem: I was the only lead from my

organization in attendance. Normally, I'd have expected another leader to ask tough

questions already. But with the faces in the room, I didn't know if anyone else was

comfortable making waves when necessary. A thousand questions came to mind, and I

quickly raised my hand, unleashing a series of simple questions, one after another. "What

is your schedule? When can you get working code to us? Who are your other customers,

and how will you prioritize their requests against ours? Why is it in our interest to make

ourselves dependent on you and your team?" Their jaws dropped. They were entirely

unprepared.

MAKING THINGS HAPPEN 267

It was clear they had not considered these questions before. Worse, they did not expect to

have to answer them for potential clients. I politely explained that they were not ready

for this meeting. I apologized if my expectationswere not made clear when the meeting
was arranged (I thought they were). I told them that without those answers, this meeting

was a waste of everyone's time, including theirs. I suggested we postpone the rest of the

meeting until they had answers for these simple questions. They sheepishly agreed, and

the meeting ended.

In PM parlance, what I did in this story was call bullshit. This is in reference to the card

game Bullshit, where you win if you get rid of all the cards in your hand. In each turn of

the game, a player states which cards he's playing as he places them face down into a

pile. He is not obligated to tell the truth. So, if at any time another player thinks the first

player is lying, she can "call bullshit" and force the first player to show his cards. If the

accuser is right, the first player takes all of the cards in the pile (a major setback).

However, if the accuser is wrong, she takes the pile.

Calling bullshit makes things happen.3 If people expect you will ask them tough

questions, and not hesitate to push them hard until you get answers, they will prepare

for them before they meet with you. They will not waste your or your team's time.

Remember that all kinds of deception, including self-deception, work against projects.

The sooner the truth comes to light, the sooner you can do something about it. Because

most people avoid conflict and prefer to pretend things are OK (even when there is

evidence they are not), someone has to push to get the truth out. The more you can keep

the truth out in the open, the more your team can stay low to the ground, moving at
high speed.

The challenge with questioning others is that it can run against the culture of an

individual or organization. Some cultures see questioning as an insult or a lack of trust.

They may see attempts to keep things honest as personal attacks, instead of as genuine

inquiries into the truth. You may need to approach these situations more formally than I

did in the story. Make a list of questions you expect people to answer, and provide it to

them before meetings. Or, create a list of questions that anyone in the organization is free

to ask anyone at any time (including VPs and PMs), and post it on the wall in a

conference room. If you make it public knowledge from day one that bullshit will be

called at any time, you can make it part of the culture without insulting anyone.

However, leaders still have the burden of actually calling bullshit from time to time,

demonstrating for the team that cutting to the truth quickly can be done.

3 See "How to detect bullshit" at http://www.scottberkun.com/essays/53-how-to-detect-bullshit/.

268 CHAPTER THIRTEEN

Know the critical path
In project management terminology, the critical path is the shortest sequence of work
that can complete the project. In criticalpath analysis, a diagram or flowchart is made of
all work items, showing which items are dependent on which others. If done properly,

this diagram shows where the bottlenecks will be. For example, if features B and C can't

be completed until A is done, then A is on the critical path for that part of the project.

This is important because if A is delayed or done poorly, it will seriously impact the
completion of work items B and C. It's important then for a project manager to be able to

plan and prioritize the critical path. Sometimes a relatively unimportant component on

its own can be the critical dependency that prevents true priority 1 work from being

completed. Without doing critical path analysis, you might never recognize this until it is

too late.4

From a higher-level perspective, there is a criticalpath to all situations. They don't need

to be diagrammed or measured to the same level of detail, but the thought processes in

assessing many PM situations are similar: look at the problem as a series of links, and see

where the bottlenecks or critical points are. Which decisions or actions are dependent on

which other decisions or actions? Then consider if enough attention is being paid to

them, or if the real issue isn't the one currently being discussed. You dramatically

accelerate a team by putting its attention directly on the elements, factors, and decisions

that are central to progress.

Always have a sense for the critical path of:

• The project's engineering work (as described briefly earlier)

• Human relationships (which relationships between people are the true high risks?)

• The project's high-level decision-making process (who is slowing down the team?)

• The team's processes for building code or triaging bugs (are there needless forms,

meetings, or approvals?)

• The production process of propping content to the Web or intranet

• Any meeting, situation, or process that impacts project goals

Making things happen effectively requires a strong sense of critical paths. Anytime you

walk into a room, read an email, or get involved in a decision, you must think through

what the critical paths are. Is this really the core issue? Will this discussion or line of

thinking resolve it? Focus your energy (or the room's energy) on addressing those

4 Many project management textbooks cover critical path analysis in detail. A summary can be
found at http://en.wikipedia.org/wiki/Critical_path. For deeper coverage, see Stephen Devaux's
Total ProjectControl (Wiley, 1999).

MAKING THINGS HAPPEN 269

considerations first and evaluating what needs to be done to ensure those critical paths
are made shorter, or resourced sufficiently, to prevent delays. If you can nail the critical
path, less-critical issues will more easily fall into place.

For some organizations, the fastestway to improve the (non-engineering) criticalpath is
to distribute authority across the team. Instead of requiring consensus, let individuals

make decisions and use their own judgment as to when consensus is needed. Do the

same thing for approvals, documentation, forms, or other possible bureaucratic overhead

(see Chapter 10). Often the best way of improving critical paths in organizations is to
remove processesand shift authority down and acrossa team, instead of creating new
processes or hierarchies.

Be relentless

"The world responds to action, and not much else."

—Scott Adams

Many smart people can recognize when there is a problem, but few expend the energy to
finda solution, and then summonthe courage to do it. There are always easierways: give
up, accept a partial solution, procrastinate until it goes away (fingers crossed), or blame

others. The harder way is to take the problem head-on and resist giving in to conclusions

that don't allowfor satisfaction of the goals. Successful projectmanagers simply do not
give up easily. If somethingis important to the project, they will act aggressively—using
any means necessary—to find an answer or solve the problem. This might mean

reorganizing a dysfunctional team, getting a room of difficult people to agree on goals,
finding answers to questions, or settling disagreementsbetween people.

Sometimes this means asking people to do things they don't like doing, or raising

questions they don't want to answer. Without someoneforcing those things to happen,
the easierway out will tend to be chosenfor you. Manyprojects consist of people with
specialized roles who are unlikely to take responsibility for things that are beyond their
limited scope (or that fallbetween the cracks of their role and someone else's). Perhaps
more problematic is that most of us avoid conflict. It's often the PM who has to question

people, challenge assumptions, and seek the truth, regardless of how uncomfortable it

might make others (although the goal is to do this in a way that makes them as

comfortableas possible). PMshave to be willingto do these things when necessary.

Many times, situations that initially seem untenable or intractable crumble underneath

the psychological effort of a tenacious project manager. A classic story about this attitude
is the Apollo 13mission. In his book Failure IsNot an Option (BerkleyPublishing, 2001),
Gene Kranz describes the effort that went into fixing the life-support system on the

damaged spacecraft. It was one of the hardest engineering challenges the team faced, and

270 CHAPTER THIRTEEN

there were grave doubts among those with the most expertise that even a partial solution

was possible. Kranz took the position that not onlywouldthey finda way, they would do
so in limited time. He refused to accept any easy way out, and he pushed his team to

explore alternatives, resolving their disputes and focusing their energy. All three versions
of the story—the filmApollo 13, Kranz's book, and Lost Moon (Pocket, 1995), by Jim Lovell
(the mission captain) and Jeffrey Kluger—provide fascinating accounts of one of the

greatest project management and problem-solving stories in history.

EffectivePMs simply consider more alternatives before giving up than other people do.

They question the assumptions that were left unchallenged by others, because they came

from either a VPpeople were afraid of or a source of superior expertise that no one felt

the need to challenge. The question, "How do you know what you know?" is the

simplestway to clarify what is assumed and what is real, yet many people are afraid, or
forget, to ask it. Being relentless means believing that 99% of the time there is a solution
to the problem (including, in some cases, changing the definition of the problem), and

that if it can't be found with the information at hand, deeper and more probing questions

need to be asked, no matter who has to be challenged. The success of the project has to

come first.

One of my managers in the Windows division at Microsoft was Hillel Cooperman,

perhaps the most passionate and dedicated manager I've ever had. I remember once

coming into his officewith a dilemma. My team was stuck on a complicated problem

involving both engineering and political issues. We needed another organization to do

important work for us, which they were unwilling to do. I had brainstormed with

everyone involved, I had solicitedopinions from other senior people, but I was still stuck.

There didn't seem to be a reasonable solution, yet this was something critical to the

project, and I knew giving in would be unacceptable. After explaining my situation, the

conversation went something like this: "What haven't you tried yet?" I made the mistake

of answering, "I've tried everything." He just laughed at me. "Everything? How could

you possibly have tried everything? If you've tried everything, you'd have found a choice

you feel comfortable with, which apparently you haven't yet." We found this funny

because we both knew exactly where the conversation was going.

He then asked if I wanted some suggestions. Of course I said yes. We riffed for a few

minutes, back and forth, and came up with a new list of things to consider. "Who haven't

you called on the phone? Email isn't good for this kind of thing. And of all the people on

the other side—those who disagree with you—who is most receptive to you? How hard

have you sold them on what you want? Should I get involved and work from above you?

Would that help? What about our VP? How hard have you pushed engineering to find a

workaround? A little? A lot? As hard as possible? Did you offer to buy them drinks?

Dinner? Did you talk to them one-on-one, or in a group? Keep going, keep going, keep

going. You will find a way. I trust you, and I know you will solve this. Keep going."

MAKING THINGS HAPPEN 271

He did two things for me: he reminded me that not only did I have alternatives,but also
that it was still my authority to make the decision. As tired as I was, I left his office

convinced there were more paths to explore and that it was my job to do so. My
ownership of the issue, which he'd reconfirmed, helped motivate me to be relentless. The

solution was lurking inside one of them, and I just had to find it. Like the dozens of other

issuesI was managing at the same time, I eventually found a solution (there was an
engineering workaround), but only becauseI hunted for it. It was not going to come and
find me.

Among other lessons, I learned from Hillel that diligence wins battles. If you make it clear
that you are dead serious and will fight to the end about a particularissue, you force
more possibilities to arise. People will question their assumptions if you hold on to yours
long enough. You push people to consider things they haven't considered, which is often

where the answer lies. Evenin disagreements or negotiations, if you know you're right
and keeppushinghard, people will oftengive in. Sometimes they'll give in just to get you
to leave them alone. Being pushy, provided you're not offensive, can be an effective

technique all on its own.

Being relentless is fundamental to makingthingshappen. There are many ways for
projects to slide into failure, and unless there is at least one positive emotional force

behind the project—pushing it forward, seeking out alternatives, believing there is always
a way out of every problem—the project is unlikely to succeed. Good PMs are that force.

They are compelled to keep moving forward, always on the lookout for something that
can be improved in a faster or smarter way. They seek out chaos and convert it into

clarity. Asskeptical as projectmanagersneed to be, they are simultaneouslyoptimistic
that all problems can be solved if enough intensity and focus are applied. For reasons

they themselves cannotfully explain, PMs continually holda torch up against ambiguity
and doubt, and refuse to quit until everypossible alternativehas been explored. They
believe that good thinking wins, and that it takes work to find good thoughts.

Be savvy

Beingrelentless doesn't mean you have to knock on every door, chase people down the
hallway, or stay at work until you pass out at your desk. Sheer quantity of effort can be

noble and good, but always look for ways to work smart rather than just hard. Be
relentless in spirit, but clever and savvyin action. Just because you refuse to give up
doesn't mean you have to suffer through mindless, stupid, or frustrating activities

(although sometimes they're unavoidable). Lookfor smart ways around a problem or
faster ways to resolve them. Make effective use of the people around you instead of
assuming you have to do everything yourself. But most importantly, be perceptive of

what's going on around you, with individuals and with teams.

272 CHAPTER THIRTEEN

A fundamental mistake many PMs make is to forget to assess who they are working with

and adjust their approach accordingly. Navy SEALs and Army Rangers are trained to

carry out missions on many different kinds of terrain: deserts, swamps, jungles, tundra.

Without this training, their effectiveness would be limited: they'd struggle to survive on

unfamiliar terrain because their skills wouldn't work (imagine a solider in green and olive

camouflage, trying to hide on a snow-covered field). The first lesson they learn is how to

evaluate their environment and consider what tactics and strategies from their skill set

will work for where they are. The same is true for PMs. Instead of geographic

environments, PMs must pay attention to the different social, political, and organizational

environments they are in, and use the right approaches for where they are.

Being savvy and environment-aware is most important in the following situations:

• Motivating and inspiring people

• Organizing teams and planning for action

• Settling arguments or breaking deadlocks

• Negotiating with other organizations or cultures

• Making arguments for resources

• Persuading anyone of anything

• Managing reports (personnel)

Here's the savvy PM's rough guide to evaluating an environment. These questions apply

to an individual you might be working with or to the larger team or group:

• What communication styles are being used? Direct or indirect? Are people openly

communicative, or are they reserved? Are there commonly accepted ways to make

certain kinds of points? Are people generally effective in using email? Meetings? Are

decisions made openly or behind closed doors? Match your approaches to the ones

that will be effective with whomever you're talking to.

• How broad or narrow is the group's sense of humor? What topics are forbidden

to laugh at or question? How are delicate/difficult/contentious subjects or decisions

handled by others?

• Are arguments won based on data? Logical argument through debate? Adherence

to the project goals? Who yells the loudest? Who has the brownest nose? Consider

making arguments that use the style, format, or tone most palatable to your audience,

whether it's a lone tester down the hall or a room full of executives.

• Who is effective at doing <insert thing you are trying to do hero, and what

can I emulate or learn from her? Pay attention to what works. Who are the stars?

Who gets the most respect? How are they thriving? Who is failing here? Why are they

failing?

MAKING THINGS HAPPEN 273

• In terms of actual behavior, what values are most important to this person or
group? Intelligence? Courage? Speed? Clarity? Patience? Obedience? What behav

iors are least valued or are deplored? Programmers and managers might have very dif

ferent values. Know what the other guy values before you try to convince him of

something.

• What is the organizational culture? Every university, corporation, or team has a

different set of values built into the culture. If you don't think your organization has

one, you've been there too long and can't see it anymore (or maybe you never saw it

at all). Some organizations value loyalty and respect above intelligence and individual

ity. Others focus on work ethic and commitment.

Depending on the answers to these questions, a PM should make adjustments to how she

does her work. Every time you enter another person's office, or another meeting, there

should always be some adjustments made. Like a Marine, assess the environment and

then judge the best route to get to the project goals. Avoid taking the hard road if there is

a smarter way to get where you need to go.

Guerilla tactics

Being savvy means you are looking for, and willing to take, the smarter route. The

following list contains tactics that I've used successfully or have been successfully used on

me. While your mileage with them may vary, I'm sure this list will get you thinking of

other savvy ways to accomplish what needs to be done to meet your goals. Some of these

have risks, which I'll note, and must be applied carefully. Even if you choose never to use

these yourself, by being aware of them, you will be savvier about what's going on around

you.

• Know who has authority. Don't waste time arguing with people who have no

influence over the issue. To be effective, you need to know who makes decisions or

influences a particular situation. Find out who it is (it's not always the most senior

person in the room, and the identity of the person may change from issue to issue),

get time with him one-on-one, and make your case. Or, at least find out what she

truly objects to. If you can't get to the most influential person (Sally, the VP), find the

person who has the greatest influence on her (Sally's best employee). Go to the high

est point on the chain you can reach. Warning: don't end-run people. Go to the point

of authority, but invite the opposing viewpoint if necessary, or disclose to him what

you're doing. 'Took, we disagree, but we can agree that it's Sally's decision. I'm going

to go talk to her about this tomorrow. I'd like you to be there." (See Chapter 16.)

• Go to the source. Don't dillydally with people's secondhand interpretations of what

someone said, and don't depend on written reports or emails for complex informa

tion. Find the actual person and talk to him directly. You can't get new questions

answered by reading reports or emails, and often people will tell you important things

that were inappropriate for written communication. Going to the source is always

27H CHAPTER THIRTEEN

more reliable and valuable than the alternatives, and it's worth the effort required. For

example, if two programmers are arguing about what a third programmer said, get
that third programmer in the room or on the phone. Always cut to the chase and push
others to do the same.

Switch communication modes. If communication isn't working, switch the mode.

Instead of email, call them on the phone. Instead of a phone call, drop by their office.

Everyone is more comfortable in some mediums than others. (Generally, face to face,
in front of a whiteboard, trumps everything. Get people in a room with a whiteboard
if the email thread on some issue gets out of control.) Don't let the limitations of a

particular technology stop you. Sometimes switching modes gets you a different
response, even if your request is the same, because people are more receptive to one
mode over another. For anything consequential, it's worth the money and time to get
on a plane, or drive to their office, if it improves the communication dynamic between

you and an important coworker.

Get people alone. When you talk to someone privately, her disposition toward you
is different than when you talk to her in a large group. In a meeting, important peo

ple have to craft what they say to be appropriate for all of the ears in the room. Some
times, you'll hear radically different things depending on who is in earshot. If you
want a frank and honest opinion, or an in-depth intense conversation, you need to get

people alone. Also, consider people of influence: if Jim trusts Beth's opinion, and you
want to convince Jim, if you can convince Beth first, bring her along. Don't ambush

anyone, but don't shy away from lining things up to make progress happen.

Hunt people down. If something is urgent and you are not getting the response time

you need, carve out time on your schedule to stake out the person's office or cubicle.
I've done this many times. If he wasn't answering my phone calls or emails, he'd soon

come back from a meeting and find me sitting by his door. He'd usually be caught so
off guard that I'd have a negotiating advantage. Don't be afraid to go after people if
you need something from them. Find them in the coffee room. Look for them in the
cafe at lunchtime. Ask their secretary what meetings they are in and wait outside. Be

polite, but hunt and get what you need. (However, please do not cross over into their

personal lives. If you hunt information well, you shouldn't ever even need to cross

this particular line.)

Hide. If you are behind on work and need blocks of time to get caught up, become
invisible. On occasion, I've staked out a conference room (in a neighboring building)

and told only the people who really might need me where I was. I caught up on email,
specs, employee evaluations, or anything important that wasn't getting done, without

being interrupted. For smaller orgs, working from home or a coffee shop can have the

same effect (wireless makes this easy these days). I always encouraged my reports to

do this whenever they felt it necessary. Uninterrupted time can be hard for PMs to

find, so if you can't find it, you have to make it.

MAKING THINGS HAPPEN 275

Get advice. Don't fly solo without a map unless you have to. In a given situation,
consider who involved thinks most highly of you, or who may have useful advice for
how you can get what you need. Make use of any expertise or experience you have
access to through others. Pull them aside and ask them for it. This can be about a per
son, a decision, a plan, anything. "HeyBob,I'd like your advice on this budget. Do you
have a few minutes?" Or, "Jane, I'm trying to work with Sam on this issue. Any
advice on the best way to convince him to cut this feature?" For many people, simply
asking their advice will score you credibility points: it's an act of respect to ask for
someone's opinion.

Call in favors, beg, and bribe. Make use of the credibilityor generosity you've
developed a reputation for. If you need an engineer to do extra work for you, either
because you missed something or a late requirement came in, ask her to do you a
favor. Go outside the boundaries of the strict working relationship and ask. Offer to
buy her dinner ($20 is often well worth whatever the favor is), or tell her that you
owe her one (and do hold yourself to this). The worst thing that can happen is that
she'll say no. The more favors you've done for others, the more chips you'll have to
bank on. Also, consider working three-way trades (e.g., in the game Settlers of Cat-
tan) if you know of something she wants that you can get from someone else. It's not

unethical to offer people things that will convince them to help with work that needs
to be done.

Play people off each other. This doesn't have to be evil—ifyou're very careful. If
Sam gives you a work estimate of 10 days, which you think is bogus, go and ask Bob.

If Bob says it will take less than 10 days, go back to Sam and bring Bob along. A con
versation will immediately ensue about what the work estimate really should be. If
you do this once, no engineer will ever give you bogus estimates again (you've called
bullshit). However, depending on Sam's personality, this may cost you relationship
points with him, so do it as tactfully as possible, and only when necessary. Good lead
programmers should be calling estimate bluffs on their own, but if they don't, it's up
to you.

Stack the deck. Never walk into an important meeting without knowing the opin
ions of the important people in the room. Alwaysarrive with a sense for who is likely
to support your opinion and who is likely to be against it, and have a strategy devel

oped for navigating through it all (see Chapter 16). If something important is at stake,
make some moves to sway those against you, or rally their support, before the meet
ing. Don't lie, manipulate, or mislead, but do seriously prepare and understand the
arguments and counterarguments that will come up.

Buy people coffee and tasty things. This sounds stupid, but I've found that people
I've argued with for days on end are somehow more receptive over a nice cup of cof

fee at a local coffee shop. Change the dynamic of the relationship: no matter how

much you like or don't like the person, make the invitation and invest the 20 seconds

of effort it requires. Even if he says, "No, why can't we talk here?", you've lost noth
ing. Moving the conversation to a different location, perhaps one less formal, can help

276 CHAPTER THIRTEEN

him open up to alternatives he wouldn't consider before. Think biologically: humans
are in better moods after they've eaten a fine meal or when they are in more pleasant

surroundings. I've seen PMs who keep doughnuts or cookies (as well as rum and
scotch) in their office. Is that an act of goodwill? Yes...but there are psychological ben
efits to making sure the people you are working with are well fed and associate you

with good things.

Summary
• Everything can be represented in an ordered list. Most of the work of project manage

ment is correctly prioritizing things and leading the team in carrying them out.

• The three most basic ordered lists are: project goals (vision), list of features, and list of

work items. They should always be in sync with each other. Each work item contrib

utes to a feature, and each feature contributes to a goal.

• There is a bright yellow line between priority 1 work and everything else.

• Things happen when you say no. If you can't say no, you effectively have no priorities.

• The PM has to keep the team honest and close to reality.

• Knowing the critical path in engineering and team processes enables efficiency.

• You must be both relentless and savvy to make things happen.

Exercises

A. Think of a nonwork situation where there was no predefined leader—perhaps a social

event or a class project. Who emerged as the leader and why? Did she explicitly ask

for permission to lead, or did she just take control?

B. Volunteer to lead something where no one has to work for you and the only way to

make things happen is through persuasion and influence. Start a social group on

Meetup (www.meetup.com), or a rec league sports team in your neighborhood. Do it

purely for the experience of exploring your ability to make things happen.

C. Who in your organization has a reputation for making things happen? How did they
earn it? How about people who have reputations for making things not happen? Is

there any relationship between their seniority and their MTH (making things happen)

ability?

D. For every goal you have, identify the single most important person for making that

goal happen (often it's a single programmer or team leader). Make sure he is aware of

his importance to the goal and your willingness to do whatever you can to make him

successful.

E. How are you tracking priorities for your team? How do you make those priorities

visible and clear to everyone? Ask people on your team for feedback on ways to make

the priorities easier to remember.

MAKING THINGS HAPPEN 277

F. Imagine a project where the critical path for most work items goes through one single
person. What are the pros and cons of this situation? What is the range of possible
things you can do to either reduce the risks of this situation or increase the chances?

G. Have you ever worked for someone who kept changing her mind? What impact did
this have on your ability to get things done? What about someone who never changed
her mind?

H. If being savvy is part of making things happen, what does this say about how project
managers and leaders should be hired? How can someone's ability to be persuasive be
evaluated during the interview process?

I. You decide to become a relentless project manager. You push hard to make things
happen and never give up. Your boss and other team leaders notice and clearly feel
threatened by your new attitude. How can you make things happen without rocking
the boat and upsetting other leaders?

J. When is it appropriate to go to your boss, or your boss' boss to make things happen?
How can you be savvy when escalating an issue up the management chain?

K. Simply saying "Failure is not an option" doesn't do much on it's own. Many people
say lines from movies hoping that saying the words will bring with it all of the other

things necessary to succeed. Show the Apollo 13movie at work and invite people from
your team. Discuss as a group what assets Gene Kranz and his team possessed that

made success possible. How is this different from your team?

278 CHAPTER THIRTEEN

^P^^

;^ji;S^

CHAPTER FOURTEEN

Middle-game strategy

he title of this chapter, "Middle-game strategy," refers to the game of chess. Chess games

are divided into three parts: opening, middle game, and end-game. The middle-game is

when the player's general strategy becomes evident and is applied through moves he

makes. Most moves in a game are made during middle game. End-game is the conclu

sion of play, where resources are slim and every single move counts. This chapter focuses

on project mid-game, and the next chapter covers project end-game.

"Chance favors the prepared."

—Louis Pasteur

Mid-game on projects is the middle of the overall schedule. You'll know you're in mid-

game when some things are working, but some things aren't, some issues have been

discovered and resolved, but you know others haven't even been found yet. Mid-game is

challenging because many things are happening at the same time, and it's difficult to

maintain clarity on what's going well and what's not. The term fog of war—used by

Clausewitz1 in reference to how chaotic warfare can seem while you are in it—applies

well to mid-game. There is an inevitable fog of development activity that surrounds the

team, and it's easy for the inexperienced to get lost. It's the responsibility of team leaders

to bring the team through the uncertainty of mid-game and out into end-game, where

things become clear again.

In the simplest possible view, mid-game and end-game are all about high-level

maintenance:2

1. If things are going well at the end of the first day, the goal for the next day is to keep it
going well.

2. If on any day the project is not going well, it's your job to figure out what the issues

are and then take action to make the project run well again. This might take hours,
days, or weeks.

3. Repeat until the project is complete.

The obvious challenge is there are many things that can happen to make a project run

poorly. Worse, there is limited time to figure out what's wrong and less time to resolve it.

Not to mention the effort required to keep the healthy parts of the project from running

into trouble.

T

Karl von Clausewitz was an influential 19th-century Prussian military thinker. See http://en.
wikipedia.org/wiki/Clausewitz.

CMM, the Capacity maturity model for software development developed by the Software Engi
neering institute, has defined several best practices around mid-game project level manage
ment. See http://www2.umassd.edu/SWPI/sei/tr25f/tr25.html or http://www.sei.cmu.edu/cmm/.

280 CHAPTER FOURTEEN

For these and other reasons, energy and stress levels during mid-game and end-game are

very high. The team is moving at increasing speed and the margins of error get smaller

every day. And then as end-game approaches, someone has to find the right way not

only to apply the brakes, but also to slow the movement down progressively so that

things end well.

In this chapter and the next, I'll be using the same inclusive assumptions about

methodology that I made in Chapter 2 (this advice applies well, independent of the

methodology you use). It might be worth a quick skim of the section "Silver bullets and

methodologies" in Chapter 2 before digging in here.

While this chapter applies mostly to mid-game and the next applies mostly to end-game,

there is much overlap in how and when these techniques can be applied (e.g., end-game

of one phase can be considered part of the mid-game of the entire project). So, be warned

that I will sometimes move back and forth between these two different topics.

NOTE

The coverage of mid-game and end-game management in this chapter and the next

is industrial strength. If you see situations that don't apply because of the size of

your project, feel free to skip them. I don't expect everything I cover to apply to any

single project. However, I'm trying to provide value not only to your current project,

but also future projects.

Flying ahead of the plane
Piloting large, dangerous objects requires more than a steady hand. The larger the thing

you're steering, and the more people in it, the more inertia it has. Like project

management, novices at piloting large machines (cars, planes, aircraft carriers, etc.)

underestimate the time it takes for changes at the helm to be reflected in the behavior of

the thing they are steering. As shown in Figure 14-1, the trajectory of large vehicles, or

projects, changes significantly depending on how much momentum or other forces are

involved. Most people fail to set their expectations properly for the results of their

actions. Often this is because they don't understand the dynamics of the thing they're

operating. Like someone learning to drive who skids out in the snow for the first time,

there are too many unexplained forces interacting for her to stay in control.

When people who are supposed to be in control lose control, their common response is to

panic. They might not admit this (people in panic mode rarely admit they are panicking),

but it's true. The first response is usually to take a bold corrective action in direct

response to the problem. But since they don't really understand all of the forces, this

corrective action will typically be much too strong (see Figure 14-2). By the time they

realize what they've done, another corrective action is needed, which they perform

MIDDLE-GAME STRATEGY 281

immediately. But since they're still using the same logic that got them into this fun

situation in the first place, more problems ensue.

FIGURE 1H-1. Thesame action can have differentresults,depending on how muchprojectinertiathere is.

FIGURE 1H - 2. Tothe dismay ofthose who are supposed to be in control, corrective actions on unknown
forces have unpredictable (and often maddening) results.

The fact is when an airplane, automobile, or project becomes unstable, it's dangerously

hard to control—even for someone with expert skill and experience. (Smaller projects are

certainly more agile and responsive, but they have their momentums, too.) Instability

makes the result of most actions unpredictable because there are too many variables

changing too quickly. Good project management, then, is largely about staying one or

two steps ahead of the project, investing whatever energy is necessary to avoid getting

into these situations in the first place.

Fighter pilots have a phrase for what happens when a pilot fails to stay ahead: flying

behind the plane. It means that the pilot has failed to stay (at least) one step ahead of

what's happening to his machine, and he is now a victim of the interaction of forces on

his aircraft. Like flying high-performance airplanes, projects require the management of

many different interactive forces. They are both nonlinear systems, meaning that

changing one element (speed, angle, schedule, goals) may have more than one effect, or

may affect the system with more force than expected, because it's amplified across many

different factors or people. The warning is this: even with a stable but high-speed project,

the complex nature of both the code base and the team means any management action

282 CHAPTER FOURTEEN

may have unexpected consequences. Sometimes these consequences won't be visible for

days or even weeks. When these delayed consequences do surface, it's all too easy to

assume something more recent caused the problem, making it difficult to effectively

resolve it.

Check your sanity

For project managers, the most effective way to fly in front of the plane is having a daily

sanity check. Programmers use the term sanity checking to ensure that certain important

things are true in their code (in C terminology, think assert()). This is a very good idea

because assumptions are very dangerous things. In code, when one of these sanity checks

fails, everyone can skip past the hopeless search for red herrings (problems that don't

exist), and ask the more fundamental question of why an insane condition has been

introduced into the system.

If you want to "fly in front of the plane," you have to constantly make sure the

conditions you're expecting are still true. And then if you find one that's false, you know

immediately where your attention needs to be.

The challenge is there are many other possible sanity checks. Between goals, schedules,

technologies, morale, competition, budget, and politics, it's impossible to verify

everything all the time (although this doesn't prevent some paranoid managers from

trying). It's a fatal mistake to torture a team by confirming dozens of random

assumptions every day. The more pokes you make at a team to confirm things that

should generally be true, the less you trust them, and the more you waste their time. You

want to know the state of the project without disturbing the state of the project.

There are three ways to do this: tactical questions, strategic questions, and transparent

progress measures for the team. We'll cover measures in the next chapter. For now, let's

focus on tactical and strategic questions for sanity checking.

The process is simple: keep a short list of questions that will help put you in front of the

plane and make a ritual of asking them. Ask tactical questions once a day; ask strategic

questions once a week. You can do this alone, or pick specific members of the team to be

involved in this process with you. You should also encourage individuals on the team,

especially those who are experienced or seasoned, to do similar high-level sanity

checking all on their own and to correlate their findings with yours.

My approach to this was as follows: I'd lock into my schedule a half-hour weekly meeting

with myself (if I don't protect my time, who will?). I'd close my door, put on some tunes,

and run through my question list. Often it only took a few minutes. I'd then be able to

reprioritize my day, or my team, accordingly. On some teams, I've pushed to make this

kind of questioning part of the team culture, and I did smaller versions of this type of

questioning and answering during team meetings.

MIDDLE-GAME STRATEGY 283

Tactical (daily) questions for staying ahead
• What are our goals and commitments? Are these still accurate? There is so

much work that needs to be done on any given day that it's inevitable you and others

will lose sight of the goals. Simply looking at them every day resets your focus and pri

orities. More important for the team, if the official goals don't match the real goals

(say, due to a VP's whim) or the team goals (make stuff we think is cool), then the

goals are not accurate. If the goals are not accurate, the team is in conflict. When a

team is in conflict, symptoms will surface. Don't wait for symptoms if you see obvious

conflicts that will eventually cause them. Stay in front, especially on issues that impact

the goals directly.

• Is what we're doing today contributing to our goals? Look at the work items

your programmers are working on today, tomorrow, and this week. Is it clear how

they are contributing to the goals or fulfilling requirements? If not, the ship is starting

to drift. Work with the appropriate programmer(s) to refresh everyone's understand

ing of the goals and the work's value toward the goals. Then adjust one of three

things: the goals, the work, or both. This is sometimes called work alignment; like the

wheels on your car, you have to periodically check to make sure things are moving in

the same direction.

• Are the work items not only being completed, but being completed in a way

that satisfies the requirements and scenarios? There are 1,000 ways to complete

a unit of work that do not meet the full spirit and intention of the design. Any good

design or specification will have defined things such that work items will satisfy the

real customer scenarios. However, the subtleties of usability, business requirements,

component integration, and visual design are often lost on programmers with 15 other

work items to do. If a dedicated interface designer (or other expert) is around, she

should be actively reviewing check-ins and the daily build to make sure the work

items satisfy holistic, not just line item, requirements.

Strategic (weekly/monthly) questions for staying
ahead

These questions are often the subject of leadership meetings. If there is a weekly or

monthly status discussion, it's these sorts of issues that deserve leadership attention. But

even for an individual PM working on a small area, these questions apply.

• What is our current probability to hit the next date/milestone/deliverable at

the appropriate level of quality? Things have changed since work estimates were

done. How do people feel about the work now that they're in it? Ask yourself, and

key people on your team, what the probability is of successfully meeting the next date.

100%? 90%? 50%? High? Medium? Low? Be honest, and ask others to do so as well.

Be sensitive to the team: don't make this guilt or challenge driven, as if you're trying

to prove that their estimates are bad or that they need to work harder. Instead, make

it clear that you need honest answers as of the current moment. (Why they have low

281 CHAPTER FOURTEEN

confidence or who's to blame for it doesn't change the fact that they have tangible

doubts. You want to be aware of and understand these doubts.)

• What adjustments are needed to improve this probability? It should be exceed

ingly rare to get 100% confidence in the next date from anyone who's honest and

sane. The follow-up to the probability question should always be how you can make

the probability higher. Fewer meetings and interruptions? Faster decisions? Cut fea

tures? Better decisions? Clarify goals? Better code reviews? What? Ask the people who

are most involved in the daily frontline work. Make it a high-priority item for your

self and the team to actively ask this question and invest in the answers.

• How do we make adjustments carefully and in isolation? Always think surgi

cally first. What is the smallest amount of action necessary to successfully resolve the

problem and improve our probability? A phone call? An email? Making an important

decision visible? Firing someone? Don't be afraid to take big action if that's the small

est amount that will do the job. If no surgical options are available, think holistically.

Do the goals need adjusting? The check-in process? What system process or attitude

can be adjusted to resolve the symptom and the cause? (See the next section, "Taking

safe action.")

• What are the biggest or most probable risks for today/next week/next

month? What are our contingencies if they come true? Simply by identifying

three or more dangerous or likely risks, you take a large step toward preventing them;

you will have turned your radar on, and you'll be sensitive to any warning signs that

might indicate these problems are occurring. Even if you take only 5 or 10 minutes a

week to list out possible risks, and your possible responses to those risks, you'll be put

ting yourself in front of the plane. This kind of project insurance is often cheap—a few

minutes a week buys a great deal of protection.

• How might the world have changed without me knowing it? Is my VP or

stakeholder still on board? Have his goals changed? Are key players on my team wor

ried about something I don't know about that will impact the project if they are right?

What has our competitor done that we might need to respond to? Are our partners or

dependencies still on track? What is going wrong today that I won't find out about

until tomorrow? A few short phone calls or hallway wanderings typically answer this

question. Be careful not to micromanage, act out of paranoia, or breed fear in others.

Make it a common and casual thing to make these kinds of inquiries. More so, encour

age and reward people who proactively get this kind of information (about their own

or others' responsibilities) to you.

However, no matter how experienced, prepared, or smart you are, there will always be

days that you end up flying behind your project. Learn to see the difference between

having a ton of work to do and being behind the plane—they're not the same thing. Odds

are good you'll often feel there is more work to do than you have time for. However, if

you've built ordered lists to prioritize work (see Chapter 13), you'll know there are

always things waiting for your time. But when you're behind, you'll feel frozen,

MIDDLE-GAME STRATEGY 285

depressed, or even apathetic. You'll believe that no matter how late you stay at the office,

you can never get the project back under control.

Three important last things:

1. When you're behind, know you're behind. Remember that schedules are

probabilities. How sure are you that what needs to be completed will get done this

week? 80%? 50%? If odds are 50-50 (or worse) that you'll make it, you're behind;

your margin of error is small, and you will make mistakes if you haven't already.

2. When you see others behind the plane, offer your support to them. Don't deny
the problem: tell them you see it and that you'll try to help. Avoid letting anyone in

your sphere of influence flail or panic. Stay calm, help others to stay calm, and work

together to get back in front of the plane.

3. Don't hesitate to get help from peers or supervisors. This may be the only way

to recover and get back out in front. Use their help in prioritizing your time and the

team's time, picking up some of your work, or just to listen to you blow off steam.

Take someone's hand if it's offered to you. Ask for a hand if it isn't offered.

For more coverage of how to deal with crisis situations, refer to Chapter 11.

Taking safe action
During mid-game, most actions are smaller, tighter versions of PM activity done during

planning or design. If a requirement was missed and needs to be incorporated, the

process for defining and documenting it is just a double-time version of what was done

during the requirements process (understand needs, consider tradeoffs, define, and

prioritize). Or if something was overlooked in the spec, the process for resolving it is a

double- or triple-time repeat of the specification process. Few new skills are employed

during mid-game. It's usually just a leaner and faster version of a skill that was used

earlier on. The problem is that working at speed breeds risk. Taking safe action during

mid-game simply means that the integrity of the project is not unintentionally disrupted

as a result of the action.

Safe action is difficult because the ammunition is live in mid-game. Things are already in

motion and many decisions have already been made, which may conflict with any new

action. For example, if halfway through the construction of your house you decide to

change the plan from a standard A-frame to a geodesic dome, you will have to throw

away lots of materials and effort, and possibly require new work to be done under greater

pressure. It takes experience to learn how changing a requirement, cutting a feature, or

modifying a design will affect both the code base and the team.

286 CHAPTER FOURTEEN

The PM's goal must be to take safe action. She needs to move and behave in ways that

simultaneously keep the project on track toward goals that might change, while causing

as little damage to the project as possible. Some damage is inevitable and should be

expected. But the more efficient a PM's actions are, the less negative impact there will be.

As Figure 14-3 shows, the further along a project is, the harder it is to take safe action.

This is because the probability that an action will have expensive consequences goes up

over time: the odds are higher that work already completed will need to be modified or

thrown away. Those expenses might be entirely warranted, but taking safe action means

that there is some knowledge about costs before decisions are made.

Size o-f aU/vs-tmen-t Time e/a.pa.sed

FIGURE 1H-3. Making safe adjustments is more difficult if the adjustment is large, and/or it's made late

in the project.

When considering adjustments (feature/goal/requirement changes) during mid-game,

there are five questions to consider:

1. What problem are we trying to solve? Do we need to solve this problem to be

successful? Do we need to solve this problem during this milestone? Can we just live

with the problem?

2. Is this problem a symptom or a cause? Is it acceptable to only resolve the symptom?

3. Do we understand the state of the code or the team well enough to predict how an

action will impact them?

4. Are the costs of the adjustment (including the time to understand the state of the

code/team, consider alternatives, and get political support for the decision) worth the

benefit of the change? Finding and then resolving the causes might cost more than

just living with the symptoms, much less fixing them.

5. Are the risks of potential new problems worth the benefit of the change?

The decision of whether to take action relies on the same decision-making strategies

discussed in Chapter 8. Any design, specification, communication, or political action

required makes use of the tactics discussed in Chapters 6, 7, 9, and 16, respectively. The

attitude and approach are the same, but the timeline and margin for error are much

MIDDLE-GAME STRATEGY 287

smaller. The lack of time to consider options means two things. First, rely on knowledge

learned during any prototyping or design effort early on. Some of the adjustments you're

considering should have surfaced back then, and use the team's knowledge to aid in

current analysis. Second, be conservative. The less you know, the more risks you can't

see. The later you are in the schedule, the higher the bar should be for taking action.

Breaking commitments

Part of safe action is considering the commitments team leaders have made. As we

discussed in Chapter 12, the trust leaders earn from their team is defined by how the

leaders manage their commitments. The vision document, the requirements, and the

schedule are all forms of commitment between management, team leaders, programmers,

and the customer. Any action you take during mid-game may invalidate the prior

commitments you've made.

To maintain trust with your team as changes happen, you must pay respect to previous

commitments. As author Watts S. Humphrey stated, "If something changes that impacts

either party relative to the commitment, advance notice is given and a new commitment

is negotiated."3 Changes are allowed, but they should follow a process of negotiation

similar to the one that led to the first set of commitments (vision, requirements,

schedule). You don't need to draft documents or have big meetings, but you do need to

inform people as commitments are changing, and involve them in the process of deciding

how those changes will happen.

If you are asking your team to throw away two weeks of work, make sure that you

included those costs when calculating the decision. Provide them with reasoning as to

why the new change is the right one, and tell them what factors contributed to this

opinion. If possible, bring people on the team into the discussion before final decisions

are made.

Don't be afraid to make changes. Change is good, and it's inevitable. But there are many

different kinds of change, and many different ways for a leader to manage a team

through it. If you were heading west, and now want the project to head north, you will

need to apply the same kinds of skills (although twice as fast and half as formal) required

to get the team moving north, as you did to get them moving west. Look back at

Chapters 3, 4, 11, and 12 for guidance on leading through change.

3 From Managing the SoftwareProcess (Addison-Wesley Professional, 1989).

288 CHAPTER FOURTEEN

The coding pipeline
The pragmatic view of mid-game work focuses on programmers writing code. The only

way the project moves forward is with each line of code written that brings the project

closer to completion (pet features, unneeded optimizations, etc., do not move the project

forward). All of the planning and design effort that takes place before programmers write

code, whether done by them or by others, is done to create an efficient sequence of work

for them to do while the clock is ticking. This is called the coding pipeline, and there are

many techniques for how it's managed.4

It's the PM's job to make sure the coding pipeline is running smoothly. While

programmers might own the management of the pipeline and decide who works on

what,5 it's still the PM's responsibility to make sure that the programming team has as

much support as necessary to make it work. This may involve gopher tasks, organizing

meetings, nagging various people to finalize decisions, or, in some cases, resolving the

remaining design issues6 (see Figure 14-4). The PM may have to work a few days in front

of the programmer, finalizing designs and feeding the pipeline. If a PM is responsible for

the work of several developers, she will have to carefully prioritize her time to ensure she

can juggle the competing demands of multiple pipelines (another reason why the lead

programmer should be doing some or more of this work).

In WebProjectManagement: Delivering Successful Commercial WebSites (Morgan Kaufmann,

2001), author Ashley Friedlein calls this process briefing the team, and the details for the

next piece of work they are to do is called a brief. As Friedlein writes, "To maximize

efficiency and speed of development, your briefs need to be created so that they are

always ahead of where the work is at the moment. As soon as a piece of work is finished,

you have the brief for the next section of work ready." These briefs are derived from the

specs (if still relevant), but include anything new or changed that the programmer might

need to know. Without actively briefing programmers during mid-game, there can be any

number of things that block a work item and slow down the pipeline: usability issues,

visual design work, work items done by other programmers, marketing issues, technical

4 Some Agile methods use planning boards, where story cards for each unit of work are tracked.
Other teams use a spreadsheet or database to track who is working on what, and what work
items will come next.

5 There are formalized ways to do this. Some teams have a weekly meeting where the pipeline
for each programmer is briefly discussed: everyone knows the work items for the team (for indi
viduals, for the week). The PM is there to make sure any timing issues are integrated into the
pipeline.

6 On UI intensive projects, it was management of the coding pipeline that allowed us to iterate
on the design. We'd manage the pipeline to do part of work item A, get it in the usability lab,
learn a ton of great stuff, refine the design, and then do the remaining parts of A. Provided we
kept the pipeline full, and didn't go over budget for dev time or milestone, designers could do
low/mid-level UI design work in parallel with the programming team.

MIDDLE-GAME STRATEGY 289

Today TomorrokJ Jomorrota

Pro<fa.mmer

?M I Ve%i$r>for A

FIGURE 1H-H. The final details ofa spec/design can be verified or finalized in parallel by the PM or

designer. Thiscontributes to the value of the coding pipeline.

problems, or external dependencies. Because PMs often have the most diverse set of

skills, they're the best people to run point for the coding pipeline, flagging or resolving

issues, and smoothing things out before the programmer starts on them. (This includes

seeking out frustrated programmers who are blocked, but either won't admit it or haven't

realized it yet.)

Four questions define how to do this well:

What work items are actively being coded? Are there any issues blocking pro

grammers from completing their currently active work items? If so, eliminate them

(the blocking issues, not the work items). This is a red-alert state for a project. If a pro

grammer is blocked from actively writing code, the project is stalled. Nothing is more

important than resolving an issue that blocks a programmer. Simply ask them, "How

can I help you resolve this?" They'll let you know if you can help. If the blocking issue

is a dependency (e.g., Fred has to finish work item 6 before Bob can start on work

item 7), consider what other work a programmer can do until that block is removed.

Does the programmer know and understand everything needed to imple

ment the current work item to specification? There are always questions and

gaps that arise only at the moment of implementation. Some programmers are more

proactive than others about resolving these gaps in a mature fashion. The PM or

designer needs to be available and involved enough to help identify and close these

gaps. Sometimes, they can be anticipated—for example, were all the issues raised in

the spec review for this work item resolved?

What is the next set of items that will be coded? This is where real pipeline man

agement begins: staying one step ahead of programmers (see Figure 14-4). If the cur

rently active work items are in good shape, the focus moves to the next items up the

pipeline. The next items should tend to be the next most important piece of work for

the project. Always try to do the most critical work first, even if it's the hardest. For

each item in the pipeline, consider what open issues they have that might slow or stall

the programmer when the item arrives on his plate. Find and resolve them.

290 CHAPTER FOURTEEN

• Was the last work item that was completed, really completed? It's the output

of the coding pipeline that matters. Someone has to be looking at the effect of check-

ins on the build and make sure it does what it's supposed to do from the customer

perspective. Did the completion of that last work item truly add the functionality and

behavior required? Does the test team agree? Did all unit tests pass? Did someone at

least open bugs to track what's missing? Daily builds (described in the next chapter)

are an easy way to track this because you can always experience the current state of

the project—and find gaps in what was completed—to what is needed. The bigger the

work item, the more important this is.

Some programmers take more responsibility for their coding pipelines than others. Many

programmers will more aggressively seek out certain kinds of issues (technical) and tend

to ignore or delay on others (business, political). Part of your relationship with each

programmer is knowing how much involvement you need to take on in managing their

pipeline. It doesn't matter so much who does it, as long as it's done, and someone is

actively verifying and protecting the quality of those work items. (This is a role

discussion, as described in Chapter 9.)

Aggressive and conservative pipelining

Often, the coding pipeline only needs to be three items ahead of the programming team

(if each item requires two days, three items need more than a week of work). It can be an

informal discussion between PMs and programmers to agree on the next logical

sequence. (Or, if a master critical path or Gantt chart exists, and it's actually not weeks

out of date, the pipeline can be derived from it.) This gives just enough of a buffer so that

if a blocking issue can't be resolved in time, the programmer and PM have enough time

to find another suitable work item to put in the pipeline while that blocking issue gets

resolved.

A team with an aggressive posture can bet more heavily on pipelining to prioritize issues.

Instead of making an elaborate work breakdown structure (WBS) of all work items, the

team bets heavily on changes happening and on the ability for the PM or lead

programmer to manage the pipeline. The risks here are higher: if the pipeline gets backed

up or can't stay ahead of the team, bad decisions will get made and time will be wasted.

For more on building good WBSs and applying them to project scheduling, see Total

Project Control, by Stephen Devaux (Wiley, 1999), or any good traditional project

management reference.

For teams with a more conservative posture, managing the pipeline is a gentle refinement

of the original work-item list that was created during planning. The pipeline may be

mapped out for weeks or months of work, using the original plan as the source for the

pipeline for each programmer. There might be small adjustments, but the expectation is

that the original plan will stay viable through, at least, the milestone. When the next

MIDDLE-GAME STRATEGY 291

milestone starts, a new work-item list is generated as part of planning, and the process

repeats. So, depending on how short the milestone is, or how stable a project is, up-front

pipeline planning can be made to work.

However, the fundamental point about pipelines isn't how you do it. Every methodology

offers an alternative way. What matters is that the pipeline is managed effectively, that

the right work items are done in the right way, and that little time is wasted figuring out

what to implement next.

The coding pipeline becomes the bug fix pipeline

Later on in a project, after all work items have been completed, the coding pipeline

continues. What changes is that instead of work items, the pipeline is filled with bugs/

defects to be fixed. In Chapter 15, we'll talk about this when we cover triage—the

decision-making process about how bugs should be handled.

Tracking progress

The simplest scoreboard for tracking mid-game progress is the work-item list: until each

scheduled work item is completed (to the appropriate level of quality), mid-game is not

over (see Figure 14-5). All of the mid-game strategies involve understanding the state of

the project, keeping the team on the right track, and setting things up for a successful

end-game. The score of completed work items is the most essential data for making these

determinations.

tdorAi-fems Compter

A y«s

3 Ves

C A/e>

V A/c

e A/o

FIGURE 1H-5. Mid-game is not over untilall scheduled work items are complete. Only then does end

game begin. Anything thatdoes not affect the rateofcompletion of workitems should never takepriority
over things that do.

I recommend using a very simple view of the project, such as the one shown in

Figure 14-5, and making it as visible to the team as possible (on larger projects, show

percentage of work items complete by area). If there is a team web site or wiki, a

summary of work-item progress should be displayed prominently, and updated daily.

Place a large whiteboard in the main hallway for the team, and place a similar chart there

as well. Every weekly status meeting or large team meeting should start with a quick

review of the big-team status. Because work items should be completed in one to three

292 CHAPTER FOURTEEN

days, a chart like Figure 14-5 will show progress on a near-daily basis. People should be

encouraged to use it to see what's been checked in recently and what's coming next.

Secondary data about status, such as remaining days per work item, days of work

remaining per programmer, etc., should of course be tracked. But do not allow that data

to cloud the simple view. During mid-game, it's much more important to provide ways

for the team to obtain a holistic sense of how the project is going. Individuals will often

have a sense of their local areas and any areas they come into contact with in their daily

work.

There's certainly more to know about tracking progress effectively. I'll cover this in depth

in the next chapter, where bugs and trends become critically important.

Hitting moving targets
"No battle was ever won according to plan, but no battle was ever won

without one.**

— DwightD. Eisenhower

One of the strongest arguments for the short cycles of XP development and other

methods is that directions change all the time. By using short development cycles, the

project can respond to major direction changes without throwing away the balance of

work, and any planning or design effort can focus on the tangible short term. This all

makes great sense to me, as does the underlying attitude of aiming for consistent short-

term wins. But there is one additional truth: longer-term plans, even if they are rough,

will tend to make short- and mid-term changes easier.

The reason is at the moment when a change occurs, the original plan is rarely thrown

away in its entirety. Instead, changes (aka deltas) are made relative to some baseline idea

of what the project was going to be until the new change was made. The more accurate

that original plan was, even if it was a rough plan, the stronger a point of reference it can

be and the faster those adjustments can be made. What this means is that the best

insurance against the volatility of things changing is to have a workable plan from the

start that you can adjust as you go.

"Well, in my opinion a battle never works according to plan. The plan is only a

common base for changes. It's very important that everyone should know the

plan, so you can change it easily...the modern battle is very fluid, and you have

to make your decisions very fast—and mostly not according to plan. But at least

everybody knows where you're coming from, and [then] where you're going to,

more or less."

— Major-GeneralDanLaner,IsraeliDefense Forcescommander

MIDDLE-GAME STRATEGY 293

The trick in using plans where targets are expected to move is to never allow long periods

of time to go by without updating the plan. If you can find the right intervals, moving

targets don't really move much all at once—they simply track in a certain direction at a

certain velocity at a certain time. If you have multiple milestones, or phases in your

project (see Chapter 2), these are your natural intervals for making adjustments (and if

new design time is planned in each of those phases, you can revisit things done in the

first milestone that need to be changed). Even within a three- or six-week milestone, you

can find one or two midpoints to re-evaluate the project trajectory relative to any goals or

requirements that might have changed. For this reason, the length of milestones should

correspond to volatility: the more volatile the direction, the shorter the milestone length.

Figure 14-6 shows a simple example of making adjustments to align with moving goals.

The project starts at A and is supposed to end at B. If two weeks into the project (perhaps

the completion of a short milestone) team leaders agree that the goals for B have

changed, the project must be shifted to continue to align with B. Two weeks after that,

more adjustments are made, and a new course correction takes place. Some work might

be thrown away, but less work will be lost in adjusting direction early than in adjusting

direction late. If these movements coincide with the end/beginning of milestones, the

team has time to do some design work to compensate for the changes, add work items to

modify previous work, and make the adjustments in stride.

Z>ay/

®

®

z>*y/r

®

Day 30

©

®

FIGURE 1H-6. Goals, requirements, and constraints will change, but if the velocity and direction are

understood, and intermediate steps are taken to trackto changes, the change can be managed.

Even without proper milestone breaks, the coding pipeline can help make these mid-

course adjustments controllable for the development team. Because these course changes

occur in the pipeline out in front of the programming team, there is a buffer for changes

to occur. The more lead time in the pipeline (see Figure 14-7), the more buffer there is.

Assuming, of course, that there is someone (PM or lead programmer) with the time to

manage the pipeline, the team doesn't have to come to a complete stall to make direction

changes. There just needs to be enough (of the right) work in the pipeline.

29H CHAPTER FOURTEEN

Ac-fva./ movemer>4

o o ©
I

I i

I !

1 I

L

®

i

Area, o-f
coverage ~^>

Possib/e supported mcvemen-f

o o ©

i„„.

1 !

! !

•®-

FIGURE 1H-7. Every plan has an area ofcoverage for how much variance it can support. The broader or

more insightful (predictive ofpossible change) the plan is, the greater the area ofcoverage.

However, this does assume that the changes aren't radically far from the initial plan; a

given planning effort provides only so much ability for movement (see Figure 14-7). If

the new requirements or goals cross over a certain point, new major design work and

exploration will need to be done that goes beyond how much lead time the coding

pipeline supports (or, in some cases, how much design time is planned for the next

milestone). For example, if the initial plan was to make a toaster oven, it might be

possible to adjust the project during mid-game to make it into a mid-size oven—but not a

particle accelerator or an oil tanker.

In Figure 14-7, a rough model shows how much variance a project has; the area

represents the space of changes that the planning effort has allowed a team to recover

from without major new work. A similar diagram could be drawn at the micro level for

each work item. Depending on the programmer's approach, her plan will have varying

levels of coverage for requirements/design changes to that work item.

There's one goofy thing about Figure 14-7 worth noting. It represents chronological

progress vertically, implying that the area of coverage provides more opportunity for

movement over time, which isn't true. A more accurate way to think of the area of

coverage is that it changes as the project does, growing and shrinking depending on what

state the project is in. Generally, the space of coverage shrinks over time as work items

are completed. But each movement made shifts the effective plan, and along with it, the

possible coverage of future movement.

Dealing with mystery management

On well-functioning projects in healthy organizations, most high-level changes are timed

with project milestones (because, again, the length of milestones corresponds roughly to

the volatility of the project or organization). Management has the patience and maturity

to wait until a phase is out before forcing the team to reset and readjust. But even in

these organizations, there can be management directives that force change to occur mid

stream, without much ramp-up time to prepare for them.

MIDDLE-GAME STRATEGY 295

Often there are more rumblings of management, client, or competitive reasons to make

course corrections than actual decisions to change course. Sometimes, it's within your

own power to make the call to shift directions, and other times you simply have to wait

for someone else to decide. In either case, part of your thinking has to include a rough

plan for what you'd do if the threatened change becomes real. Before big decisions come

from management, or competitors take right turns, some writing on the wall can usually

be found days or weeks in advance—if you're looking for it. You are dependent on your

relationships and political skills to obtain the information you need to prevent your

project from being blindsided. It can't always be avoided, but sometimes it can.

Using the information you have, periodically take your best guess at what the direction

shift might be (support for a certain technology? a new feature? a new goal?), and sketch

out what adjustments you'd need to get there. This can be very rough—for example,

having a brief conversation with a lead programmer about what might be involved:

"Fred, what would we have to do to support the 2.0 API set in addition to the ones we

already use?" Your goal isn't a new battle plan, it's having some sense of what that road

will look like should you and your team have to take it. Re-examine your prioritization

list for work items (see Chapter 13), and see if you've already done some thinking on the

new work you might have to take on.

Exploring the impact of change

If the probability of that change becomes high, you can adjust the work in the coding

pipeline to better prepare yourself for the changes. In chess strategy, there are at least

two different ways to plan a move:

• Conservative. Look for moves that give you the greatest number of future moves and

that keep your options open.

• Aggressive. Make full commitment to one line of strategy you see clearly and force

the game on your opponent.

On projects (or in chess), when you feel stronger than the opponent (i.e., mystery

management, or the competition), aggressive is the way to go. When you are

outmatched, conservative tends to be best. Telling your team to think conservatively may

slow them slightly, but that's the price of the insurance you're buying. Sometimes, being

aggressive forces others to make decisions, and if you're indifferent to the outcome but

need a quick decision, aggressive decisions can work in your favor even if you are in a

weak political position.

But notice that considering adjustments doesn't demand extra development time. There

might be an alternative algorithm that is just as reliable but more flexible in an important

way. Simply ask the programmer or the team, "Look guys. I'm concerned that our client/

296 CHAPTER FOURTEEN

VP is going to force us to support a different database schema. Look at what you're doing,

and if there are smart ways to prepare for this change as you're doing your work, make it

so. But don't make major changes or sacrifice quality because of this. Understood?"

Sometimes this is impossible: it might take hours of investigation to answer that question.

But there are cases where it will be straightforward. For example, a programmer might

have already considered that direction or have a reasonable opinion based on her

understanding of the code. To prepare your team in this way, it might cost nothing more

than a five-minute conversation. More important, perhaps: the better you understand the

possible costs of change, the better your arguments will be for vetoing the changes (or if

appropriate, for supporting them).

The potential reach of change

Also note that the closer a project gets to the original (or last active) set of goals, the

further it will be from achieving any adjustments or direction changes. In Figure 14-8,

the project is officially moving toward B, yet there are strong rumors of a direction

change (shown as a "?" in the figure). The PM takes a best guess on what the change will

be and adjusts accordingly. He makes a lightweight plan with his programmers as to how

they might respond.

® ©

Vo.^30

© ©

he rea.ch of change

® ®
FIGURE 1H-8. ifyou know a change is coming but don't know when, you can still trackto your best guess

for what the change will be.

As the project progresses, the mystery change continues to be a rumor. The angle of the

change shifts as the project continues along to B, becoming sharper and riskier. With

each line of code written, less and less support can be given to a possible alternative

direction. As the project inches closer to completion at B, the distance to the mystery

change (called the reach of change in Figure 14-8) will get longer, in relation to the

remaining distance to B. The longer the team waits to make changes while the project is

in motion, the larger the costs will tend to be.

MIDDLE-GAME STRATEGY 297

If the change happens, and your predictive efforts didn't pay off, you have no choice: the

team needs to be reset. If the change came without additional time resources, return to

your prioritization lists and find items you can cut to buy the time you think you need

(see Chapter 11).

Managing changes (change control)

Some project teams actively control and track any design change that demands a new

work item or the elimination of an existing one (this starts after specs have been formally

reviewed). The fear is that if design changes are made without some process involved,

big, bad, evil decisions will happen without the right people knowing about it. Depending

on the culture and goals of your team, you might or might not need to do this. As

Friedlein points out, "The way you manage change through the project will depend on...

the size and nature of the project. Generally the larger and more complex the project,

and the more rigid the specifications, the more tightly you will have to manage change."7

If your team doesn't bother with a spec process, it probably won't bother to have a

change process either because there's nothing to mark deltas against.

However, even on a team with few formal processes, the closer a project is to completion,

the more sensitive it will be to changes. Without some process in place to communicate,

track, and manage changes, it's difficult and frustrating to close the door on a project. The

more mature a team is, the earlier it will tend to want to control change. It's not

necessarily an end-game process, it's just that as end-game approaches, the risks go up, as

does the desire to control against them.

The simplest way to manage change is with a super-lean version of a specification

process. NASA and Microsoft both call this a DCR, or design change request. Other

common names for it are ECR (engineering change request), ECO (engineering change

order), or, most simply, CR (change request).

The simplest process for this is as follows:

1. Someone (PM) writes a summary of the change—including its relationship to the

project goals or requirements—the need for the change, and an explanation of the

design of the change to be made. (Bonus points are given for identifying possible risks
for the DCR's impact on the project.) This should rarely be more than a page or two. A

bug (or whatever method is used for tracking issues) should be created to track the

DCR, and this document should be attached to it.

2. The programmer, tester, and anyone significantly impacted by the change must

contribute to the DCR summary and agree that this change is needed and designed

appropriately. Programmer provides dev estimates, and tester provides test estimates
(or rough test plan).

7 From Web Project Management: Delivering Successful Commercial WebSites.

298 CHAPTER FOURTEEN

3. The DCR is proposed to a small group of team leaders (see the section "War team" in

Chapter 15), or the group manager, who gives a go/no-go decision on the change. If

the change goes through, it's treated as an additional work item to the project, and the

DCR is broadcast to the team (and the work item is assigned to the appropriate

programmer). Schedules and any project documentation should be updated to reflect

this change. If rejected, the DCR crawls into the nearest corner of the room, sobbing

uncontrollably, until it disappears from the project universe.

The last step can be skipped if the teams are small and authority is highly distributed. The

relevant people just meet, discuss options, and decide on the change. But if the change

will force the project to slip, impact other programmers, or require additional resources,

team leaders need to be involved.

DCRs are always more expensive than their programming and test estimates. They have

unexpected collateral side effects on the rest of the engineering team, and they cause the

PM to give less attention to the pipeline and other already important activities. Because

design work for DCRs is done in double time, the probability of mistakes and bad design

choices is high. It's common for one DCR to cause the need for other DCRs. My general

attitude toward them is this: it's better to use short dev cycles with strong design

processes and allow few DCRs, than to plan a schedule that expects many DCR changes.

There should be every motivation for people on the team to want to resolve their design

issues early and avoid the DCR process.

Summary
• Mid-game and end-game correspond to the middle and end of the project.

• If on any day the project is not going well, it's your job to figure out what's wrong and

resolve it. Repeat this throughout mid-game.

• Projects are complex non-linear systems and have significant inertia. If you wait to see

acute problems before taking action, you will be too late and may make things worse.

• When your project is out of control, you are flying behind the plane, which is a bad

place to be. Sanity checking is the easiest way to stay in front of the plane. There are

both tactical and strategic sanity checks.

• Consider how to take action to correct a situation in the safest way possible. The larger

the action, and the further along the project is, the more dangerous the actions are.

• The coding pipeline is how work items are managed during implementation. There are

aggressive and conservative ways to manage the pipeline.

• Milestone-based planning and the coding pipeline provide opportunities to make safe

course corrections for projects.

• Change control (DCRs) is how you throttle the rate of medium- and low-level change

on a project.

MIDDLE-GAME STRATEGY 299

Exercises

A. If you are in mid-game on a project now, randomly pick five people on your team and

ask them to describe their confidence in the schedule as a percentage. Do the same

with five managers. Compare the results and present them at a team meeting. If this is

useful, repeat weekly. Keep all chosen people anonymous so they can be honest.

B. Often project managers are forced to fly behind the plane because they don't have

control over the schedule, budget, or other factors that push projects out of control.

What factors do you control that can help you get back in front? What can you do to

inform your boss and team about the factors that impact you but are out of your

control?

C. When was the last time you admitted you were in over your head? Make a list of

things that scare you the most about your current project. Pick the top fear you have

and talk to someone about it. The act of talking about it, even with a friend over a

beer, will help you manage the situation.

D. What are your next three handoff points, where work you are doing has to be given to

someone else or vice versa? What can you do for these three specific handoffs to

increase the odds they'll go smoothly?

E. Visualize your team's coding pipeline as it stands today. One easy way to do this is to

go to the whiteboard and make a list with every programmer on one axis, and time on

the other. List the next three work items they claim to be working on, with each work

item taking up more space depending on how much time it's scheduled to take. How

does making the coding pipeline visual change your thinking about managing the

project?

F. If you are afraid of mystery management, how can you make sure you hear about

changes as early as possible? Who can you enlist as your scouts for information?

G. Most people hate having their progress tracked. What incentives can you provide for

people to track their own work? Why is it that people who play sports love statistics

about their performance, but people in other industries do not?

H. On the day you start requiring official change requests, the team ignores you and

checks in work as they had the day before. How should you respond? What is the best

way to transition the team to a new way of working?

300 CHAPTER FOURTEEN

CHAPTER FIFTEEN

End-game strategy

ontinuing from last chapter's coverage of mid-game strategy, this chapter will empha

size hitting dates and deadlines, as well as what tools to use for driving projects to finish

on time.

It's easy to forget, but all projects have more than one deadline. There are always interim

dates that lead up to the milestone or end-of-project dates. This means that if your team

makes an extraordinary effort to successfully meet a deadline, and another deadline waits

on the horizon, there are hidden risks in pushing the team too hard to meet the first one.

If a tremendous effort is required to meet that first date, and the team starts on the next

one exhausted, stressed, and frustrated, the probability of overall success declines. Vince

Lombardi once said that fatigue makes cowards of us all. When we're exhausted, no

amount of caffeine can make us the same people we are under better circumstances.

"How you play a note is just as important as what the note is."

—Henry Kaiser

When a team is pushed very hard, it will take days or weeks to recover to the same level

of performance predicted in the team's work estimates (see Figure 15-1). Worse, the

more often a team is pushed in this way, the less responsive it will be—burnout is the

point at which recovery is no longer possible in a useful timeline.

Mi/es4one I

c

FIGURE 15-1. Youpay a price for crashing to hit a date in the probability ofhitting the next one. A big

push to hit Milestone 1 will force Milestone 2 to start in the hole.

At the project level, it's best to think of team productivity as a zero sum1 resource: if you

require extraordinary efforts to meet a date, realize you are stealing those efforts from the

early parts of the next phase. (However, if the team has specialized roles, it's possible to

minimize this by offsetting responsibilities. The crunch time for designers, planners, PMs,

testers, and programmers often occurs at different times of the project. If the work is

distributed properly, the entire team is never equally crunched, with different roles

carrying more of the burden at different times.)

1 Zero sum is a game theory term that means a finite set of resources. Slicing a chocolate cake into
pieces is a zero sum game: if I get more, there's less for you. However, going to an infinitely well
stocked cafe and ordering slices of cake is a non-zero sum game: we can each get as much as we
want. Yum.

302 CHAPTER FIFTEEN

Worse, there is an interest rate to pay: the ratio of recovery time to crunch effort isn't 1:1.

It takes more time to recover than it does to give the intense extra effort (e.g., it may take

only 20 seconds to sprint to catch the train, but it can take a minute or more to catch

your breath again). Sometimes, the price is sacrificing people's personal or family lives,

which isn't in the long-term interest of the individual, team, or organization (see

Figure 15-1).

This means that good management should avoid those big pushes. It's impossible to avoid

some spikes on a major project, but it's in the interest of managers to carefully control

them, work preemptively to minimize them, and understand the true costs when they

surface (i.e., don't blame the team two weeks into the next milestone for being sluggish

and cranky). The longer the project, the more energy the team loses from those spikes,

and the more difficult the true end-game of a multi-milestone project becomes.

Big deadlines are just several small
deadlines

To discuss important aspects of mid- and end-game strategy, we need to define several

interim dates that occur on projects. The three most basic interim dates, in a plain-vanilla

schedule, correspond to the crossovers between the rough rule of thirds described in

Chapter 2 (see Figure 15-2). Each crossover point represents a shift in focus for the team,

and it should have its own exit criteria.

^ -— Te%4 comp/e-fe

FIGURE 15-2. Within milestones, there are key dates that should be tracked, targeted, and given exit

criteria.

Exit criteria are your list of things that the milestone was supposed to accomplish. They

describe what state the project has to be in to complete a milestone. The earlier exit

criteria are defined, the better the odds are that the milestone will be completed on time.

The three key crossover points in any milestone are:

END-GAME STRATEGY 303

• Design complete/spec complete. The team is ready to write production code. All

specifications, prototypes, or design briefs needed to begin implementation are fin

ished. (Note that this doesn't demand for all specs to be finished, only the ones
deemed necessary to start implementation. This could be 20% or 90% of them.)

Design work may continue (see the section "The coding pipeline" in Chapter 14), and

iterations and revisions may occur, but an acceptable percentage or core of it has been
completed.

• Feature complete. The team is ready to focus on refinement and quality assurance.

This means that all of the functionality provided by individual work items has been

completed, and the behavior and design necessary to meet requirements has been

implemented. There may be quality gaps or problems, but provided leadership has

measured or tracked them (bugs do exist), core construction work can be considered

complete. Any test or quality metrics defined as part of the spec should have measure

ments in place. On this day, all remaining issues should be tracked as bugs, and the

bug database becomes the primary (if not sole) way to track remaining progress.

• Test or milestone complete. The milestone is finished. Quality and refinement have

reached the appropriate levels. The next milestone begins and/or the project ships.

This is sometimes called milestone complete because it's the last phase in the mile

stone. If it's the only or last milestone, the project is complete.

Beyond the quality of the specifications, work estimates, and the team itself, the simplest

rule of thumb for hitting dates is that the better your exit criteria, the better your chances

are.2 Until the criteria are met, the team is expected to keep working. Any important date

in your schedule should have some set of exit criteria defined for it.

Defining exit criteria

Exit criteria do not need to be complex (although they can be). However, they do need to

include these items:

• The list of work items to be completed

• A definition for the quality those things need to be completed at (perhaps derived

from test cases, test plans,3 and specifications)

• The list of things that people might think need to be done but don't actually need to
be completed

• Things people should never, ever think need to be done (sanity check)

Alternatively, the less well defined your exit criteria are, the lower your chances of hitting your
dates. The limit case is having no exit criteria, where you will depend on opinion and manage
ment's whim to figure out when you're done.

For more on test plans and general QA methodology, see Managingthe Test Process, by Rex Black
(Microsoft Press, 1999). If you're serious about quality, it should be part of the project vision
document and the planning process.

3(W CHAPTER FIFTEEN

There are many ways to both define exit criteria and to communicate and track them

with a team. The details of how they're done aren't so important (propose them to the

team, take feedback, then finalize and communicate them broadly). What matters is that

they're done early, kept simple, and used publicly to track progress and guide decisions.

Exit criteria should map back to the vision and goals, and they should be the most useful

way to apply the vision and goals to the questions and challenges faced in the middle and

end parts of milestones.

Common exit criteria include:

• Specifications/designs/work-item lists completed. This is useful only for design

completion. Whatever tools or processes used to do design work should have corre

sponding exit criteria to conclude design. Perhaps it's 90% of all specifications

reviewed, or it's a prototype with a certain set of working functionality.

• Actual work items completed. This should be the list of work items defined at the

beginning of the milestone or phase of the project. When the work items are com

pleted to specification, the phase/milestone is complete.

• Bug counts at certain levels. As we'll discuss later, there are many different ways to

track and measure bugs/defects. Generally, exit criteria involving bugs specify the

allowed quantity of active bugs of a certain type.

• Passing specified test cases. There can be a set of test conditions that are used to

determine when the milestone is complete. If test cases are used as criteria, they will

drive the decisions for which bugs/defects must be fixed before the milestone can end.

It may be sufficient to use threshold-based exit criteria defined by test cases, such as

"80% of test cases for priority 1 scenarios must be passed."

• Performance or reliability metrics. If the team is measuring performance of cer

tain components (say, a database or search engine), there might be exit criteria based

on those numbers. If the exit criterion is a 10% speed improvement over the previous

release, the milestone isn't over until that 10% increase has been achieved.

• Time or money. Time is the simplest exit criterion in the world. When a certain

amount of time is over, the milestone is over. End of story. Months make for nice

milestones because there's never any doubt about when they start, when they end, or

how much time is in them. (People use weeks and months to track the rest of their

lives, so why not base project schedules on them as well?) Half- or partially done fea

tures are cut and considered in the next milestone (if there is one). Money can also be

an exit criterion: when the budget is spent, and the power goes off, you stop.

Without exit criteria the team must depend on their subjective opinions for what "good

enough" means for a project, which is an enormous waste of time. Everyone will have

different opinions about what good enough is. Even if one person is given authority to

make this decision, it will always be contentious unless something is written down.

END-GAME STRATEGY 305

Without criteria, teams are forced to have difficult debates late in a project when stress

and risks are high. Avoid placing your team in a situation where energy must be wasted

at the end of milestones arguing over exit criteria. Instead, plan so that you can use all of

the team's energy at the end of milestones to actually meet the criteria.

Remember that the goal isn't just to hit a date, but to hit a date with the project in a

specific state. The sooner the team knows what that state is, the better the odds are that it

will happen. If they know early on what the criteria are, every decision they make

throughout the milestone will reflect that criteria. Even if the criteria change along the

way, the team will be adjusting in the same directions, collectively setting the project up

for an easier end-game.

An example list of exit criteria for a milestone on a small web project might be as follows:

• Complete work items 1-10 as per their specifications

• Meet 80% of usability goals for priority 1 areas

• Pass all priority 1 automated and manual tests

• Pass 80% of all priority 2 automated tests

• Triage all active bugs

• Fix all priority 1 and 2 bugs

• Get signoff from marketing and business team

Why hitting dates is like landing airplanes

With intermediary milestones, the goal is not just to hit a certain date, it's to set the team

up for the next milestone (or release). Hitting a date is more than a matter of chronology:

depending on how smoothly you hit the date, code stability and the next milestone (if

there is one) are at risk.

Think of landing an airplane. A good landing puts the plane in a position that makes it

easy to take off again; i.e., if the wings are still attached, the landing gear is operational,

and the crew is still alive. All that's required is more fuel, a flight plan, and a sandwich

for the pilot. The ending of milestones should be thought of in the same way. The sharper

the angle you take to finish a milestone, the higher the odds that the project won't be in

a good state when it completes the milestone.

Angle of descent

The most basic schedules for engineering projects can be converted into a simple chart,

like the one shown in Figure 15-3. This chart assumes that the rate of progress is

constant, and that the project will be completed exactly on schedule by continuing at that

constant rate. This, of course, is fantasyland. This chart will never map to reality because

306 CHAPTER FIFTEEN

team progress and efficiency are never constant (for many reasons described earlier in

this book).

J?An4a.$yfa.ncL schedule

TXMi

«$&"

FIGURE 15-3. This is the most basic milestone schedule in the world, with fantasyland assumptions

included.

Instead, most projects end up in the situation depicted in Figure 15-4. At some point on

the way to the target date, the team realizes work is not going as fast as expected. This

could be because new work has been introduced (see the section "Managing changes

(change control)" in Chapter 14) or because the team didn't meet its estimates.

Regardless of how it happened, the team now faces a choice: how do we make up the
distance to the end date? There are only three options:

1. Slip the schedule. Move the end date out to reflect the new understanding of the
rate of descent.

2. Change the angle. Somehow convince yourself that you can get the team to do more
work faster to make up for the gap in time (i.e., prepare for crash landing). You can
attempt this, but there will be a price to pay. There willbe a greater riskof mistakes,
and the team will be sluggish and tired starting the next cycle of work.

3. Meet the date with what you have. Identify the features or work items that have
the most remaining work or risk. Either cut those features, postpone them to the next
milestone (if there is one), or drop quality and ship them as they are (gulp).

^oWas/ meeJs reo/ity
$>4or4 Current Tar$e4
da-l-e « ../ cLa.4e cLaAe

«# "*»***

FIGURE 15-H. Schedule reality often disagrees with theplan. How tohandle this depends entirely onthe
exit criteria.

END-GAME STRATEGY 307

The way this choice ismade should depend entirely on the exitcriteria. This isexactly the
situation that benefits most from having clear thinking about what it means for a

milestone to end. Instead ofinventing criteria now, underthe stress ofa difficult landing,
all you need to do is lookbackand adjustthe criteria that you made weeksago. Decision
making in difficult end-game situations becomes easier if there is reference criteria that

the team is already familiar with.

Why changing the angle can't work

Using the airplane analogyagain, changing the angle to fit the remaining spacemakes the
approach unstable. Projects, much like airplanes, don't control very well when their
downward velocity is high. There are too many things that need to be done

simultaneously for that velocity to stabilize. Ifyou were in an airplane approaching the
runway and realized your approachwas off, you'd veer offand make a new approach
(moving the runway, unlike schedule dates, isn't possible). In difficult weather,

commercial airplanes often restart their approach. However, projects can rarelyafford to
do this. They are like airplanes that are lowon fuel: thereare enough resources foronly
one approach. With only one shot, sane pilots make very carefuland well-planned
approaches. Sane project managers should follow suit. If your date or feature set is
unmovable (likea runway), you must start planning for landing earlier on.

Why it gets worse

There isa basic psychological principle behind how most people go about prioritizing
theirwork. All things being equal, people will tendto avoid doing things theydon't want
to do.4 This means that as the schedule progresses, the remaining work items or bugfixes
will be the sad, unwanted tasks ofthe milestone. And evenifthe remaining workis
ridiculously funto do, if teams arerewarded for thenumbers ofbugs theyfix in a day or
week, there is natural pressure to select bugs of the appropriate difficulty to meet the
quota.

At the end of milestones, people tend to be tired, frustrated, and stressed—conditions that

lead to poorer performance. Difficult bugs that fall between areas tend to circulate around

a development team late in the schedule (akabughot potato).A programmer looks at
one of these bugs, realizesit's a tough one, and feeling the pressure of his other work,
assigns the bug to another person who couldpossibly take responsibility for it. As
Weinberg writes, "...problems don't get solved, they merely circulate." Even the best
programmers suffer these natural temptations from time to time.

4 From Volume 1, Systems Thinking, of Gerald Weinberg's Quality Software Management (Dorset
House, 1991), pp. 272-273.

308 CHAPTER FIFTEEN,

Theprimarytrend of delaying difficult work also applies to the discovery of bugs—
although its cause isn't psychological. Defects that take longer to find, or that appearlater
on in a schedule, will naturally tend to be the ones that are more complicated5 (as shown
in Figure 15-5). Forcomplex, but low-priority bugs, this doesn'tmatter much; for high-
priority ones, this trend is a serious problem. Not onlywill thesebugs take longer than
average to find, but they'll take longerthan average to fix. The straight-line paths shown
in Figure 15-4are both wrong—the approachof a projectto a date is near asymptotic
(curved) in results, and looks closer to what's shownin Figure 15-6. The team may be
working as hard as before, but the results—in terms of progress toward goals—will
decline. The closer you are to your date, the more this is true.

Time 4o find
or «r/V bv§

Comp/exiJ*/ of bv§

FIGURE 15-5. Tougher bugs tendtobediscovered orfixed later intheschedule. This means that the
angle ofapproach isn't a straight linebuta curve weighted against progress (seeFigure 15-6).

«&*"

FIGURE 15-6. Ageneric butrealistic angle-of-approach chart, assuming a constant levelof effort from
the team.

The rough guide to correct angles of approach

The angle of approach for milestones or project completion is not a mystery. Like any
other scheduling-related task (see Chapter 2), there are certain considerations that

contribute to how accurate a predicted angle will be. Here are the primary factors to

consider:

5 Ibid.

END-GAME STRATEGY 309

• Look at past performance for the team and for the project. To plan the angle,
examine how well the team has done in end-game for previous projects of a similar
type. On multi-milestone projects, look at previous milestone curves, planned versus
actual (don't cheat: use the original plan and the final actualschedule). Assume things
willbe harder on the milestone you're planning than on previous ones, despite what
you think. If you have no data to basethe angle on, what makesyou think you're not
just guessing? If you have to guess, guess conservatively.

• Do proper estimates. The angle is just another kind of schedule estimation task. Get

the appropriate people in the room, break remaining work down into tasks, discuss
risks and assumptions, and arrive at estimates. If nothing else, this will make the final
approach a team effort, where people feel they have bought into the process and
defined the angletogether. Morale will workin supportof the angle, insteadofagainst
the angle.

• Plan for a slow curve, not a straight line. Even with no data, plan on the rate of
progress to slow as the bug count declines (see Figure 15-6). Assume that the work
will get harder the closer you get to your deadline. Graph and chart with curves, not
lines.

• Don't drink the Kool-Aid. Charts are easy to make. You can put the line wherever
you like without any reference to reality, and you can possiblyeven convince others
that there's some logic behind the linesyou drew. Thinkof the pilot in that plane:
would you fly in at this angle given what you know? Raise the red flag; be the
whistleblower. Protect your team from a crash landing. If your approach is too conser
vative, the worst that can happen is that you'll finish ahead of schedule, whereas if
you're too aggressive, all sorts of evil things could happen.

• Make a black box. If nothing else, make sure real performance data is captured (see
the next section). Then after the crash landing, you'll have evidence of what went
wrong, and you can make a strong argument for adjustments in the next project or
milestone.

Elements of measurement

Tracking progressbecomesvery important in both mid-game and end-game. The larger
the team, the harder it is to make the state of the project visible. To make course

corrections or adjustments (see Chapter 14), you need to have a clear understanding of

what state the project is in both to diagnose any symptomsand to predict how the project
will respond to adjustments.

Whatever measurements you decide to use should be made visible to the entire team. In

Chapter 14,1 suggested that work items are the most important tracking mechanism for

mid-game. Here, we'll go deeper into other measurements useful for mid-game but focus
on tracking for end-game.

310 CHAPTER FIFTEEN

For end-game, you can reuse any project scoreboards usedearlier; just make sure that
the important measurement is given properemphasis (drop measurements that don't
carry much significance anymore, such as work items). The scoreboard should stay in a
visible hallway, and it can be as simple as a big whiteboard that you update frequently or

as fancy as a dedicated terminal (convenientlylocated near the restrooms, break room, or
other high-traffic areas) that pulls the most recent data from the network.

The daily build

Bymaking builds of the project each day, you force many kindsof issues to be dealt with
in the present, instead of postponingthem into the future. Anyone can look at the
current build and know immediately what the state of progress is. You can rely less on

people writing status reports or other annoying busywork; instead, you can alwaysget a
rough idea just by loading up the current build and using particular functions or features.
It can be expensive to maintain a daily build (and to create the tools needed to make it

possible6), but it's worth the costs.

With daily builds, programmers (and the whole team) will know right away when a
check-in has damaged other components, which helps keep check-in quality high. Have a
set cut-off time each day for when the build will be processed, which sets up a stable code
base to run tests against to confirm the quality of the build. (Often these daily tests are

called smoke tests: a reference to testing electronic components, where circuit boards

would be pluggedin to see if any parts literally smoked.) Afterthis time, check-ins into

the source tree simply show up in the next build.

For each build, there should be a set of tests to determine build quality. Three rankings

are all you need—good: all tests passed; mixed: some tests passed; bad: few or no tests
passed. Any specific bugs identified as the cause for any testfailing should be posted with
the build information and given a high priority.

These build-quality tests (aka build-verification tests, or BVTs) should be on path to the
exit criteria for the milestone. Early on in the milestone, they might be relaxed relative to

the exit criteria; for example, it may be acceptable to have only one "good"build a week.
But as the team approaches feature complete, the criteria should rise. With dailybuilds
and qualitytests, you always have both a quality measurement and a way to throttle

quality.

6 A good summary of tools and processes that can be used for this can be found at http://www.
martinfowler.com/articles/continuouslntegration.html.

END-GAME STRATEGY 311

Bug/defect management

At feature complete, any remaining work that needs to be done before completion should
be shifted into the bug database. This is to provide one system of control and

measurement for the project. The system used to track bugs can be simple, but there

must be one, and everyone must use it. If some programmershave pet systems for
trackingtheir work, and they're all different, it's impossible to show any project-level
control or measurement over progress. Often when the team transitions out of feature

complete, someone has to actively nag people to put itemsinto the system that they've
been tracking on their own.

Get into the habit of asking "What's the bug number?" whenever issues come up. If they
say there isn't one, end the conversation until the bug has a number. This may seem
draconian, but it's in the project's bestinterest. Thetwo minutes required to create a bug
number are entirelyworthwhile from a project-level perspective. It's fine for peopleto
track thingson their own if the issue has no impact on the buildor the codebase; you
don't want the bug system to be bogged down with bugsthat are personal remindersor
to-do list-type trivia. (Or if you allowit, make sure there is a specific bug type for this
stuff so it can be filtered out in reports and queries.)

For reference, all bugsshouldhave at leastthe following information. You can skipthis
sectionif you have a bug systemthat you're happy with. There are many differentkinds
of information you can use in bug tracking, but in my experience, these are the core
attributes needed to effectively manage bugs:

• Priority. Keepthis as simple as possible. Priority 1 = Must fix. Priority2 = Will fix
opportunistically. Priority3 = Desirable, but improbable. Priority4 = Comically
improbable.

• Severity. Howseriousis the impactof the bug? Severity 1 = Data loss, system crash,
or security issue. Severity2 = Major functionality doesn't work as expected (speci
fied). Severity 3 = Minor functionality doesn't work asexpected (specified). Severity is
distinct from priority. For example, there maybe a browser-crashing scripterror,
which is severe (Severity 1), but because it occurs only if you type "PAPAYA!" seven
times, in all caps, in the email field on a registration web page, it's low priority (Sever
ity 1, but Priority 4).

• Assigned to. Allbugs should be assigned to one person. Newbugs can be assigned to
an alias, but part of the goalof triage (discussed shortly) is to assign bugs to an individ
ual as soon as possible. Toallow for bugs to be entered from alpha or beta releases,
create a value called"active" or "party time," which bugs can be assignedto. Bugs
assigned to this value can be triaged and given to real people later.

312 CHAPTER FIFTEEN

• Reproduction (aka repro). The sequence of actions that allows someone else to
reproduce the bug. This is perhaps the most important field for bug quality. Bad repro
duction cases waste the team's time, forcing programmers to invest more energy than
should be necessary just to figure out what the bug is. Good bugs have short and sim

ple repro steps.7

• Area. For larger projects, bugs should be categorizedby where they occur in the
project (the area). This allows for bugs to be tracked by component, not just by
developer.

• Opened by. The name of the person, with contact information, who opened the bug.

• Status. A bug can be in only four states: active, fixed, resolved, or closed. Active
means the bug hasn't been fixed yet and is still up for consideration. Fixed means the
programmer believes that it's been fixed. A bug becomes resolved only when the per
son who opened the bug agrees it's been fixed, or agrees to postpone it. Closed signi
fies that the bug's life is over, and the test team has confirmed its demise.

• Resolved as. A resolved bug means it's no longer active. A bug can be resolved in
several different ways: fixed, postponed to the next milestone or release, duplicate of
an existing bug, or won't be fixed.

• Type. There are two important types of bugs: defectsand regressions. A defect is a
regular, plain-old bug. A regression is a bug that was once fixed, but now has
appeared again as a negative side effect of some other change.

• Triage. This field indicates whether the bug has been triaged and what the result was.
At times, the only bugs that should be fixed are ones that have been triaged and
marked approved. So, this field usually has three states: approved, rejected, or
investigating.

• Title. All bugs should have a one-line title describing the bug such that another
human being can get the basic idea of what the problem is.

Most bug-tracking systems provide loggingfor each bug. This makes it possible to see

who made what changes to which bug, and when they did it. This comes in handy if

decisions made about specific bugs are disputed. It also prevents people from various

kinds of deception in how bugs are managed.

The activity chart

At the project level, the most effective use of bugs is to track trends in their discovery,

evaluation, and resolution. By looking at the trends across the project, you can do three

things: measure progress, gain insight into what project-level problems might exist, and

develop a sense for what actions might correct those problems.

7 See Joel Spolsky's essay "Painless Bug Tracking" at http://www.joelonsoftware.com/articles/
fog0000000029.html.

END-GAME STRATEGY 313

Once you have even a simple bugdatabase, the trap is that it's veryeasyto generate
manydifferent kinds ofcharts and perform complex kinds ofanalysis.8 Avoid the urgeto
get fancy—it's the basiccharts that matter. More advanced queries are often distractions
("Look! Our bug fix rate corresponds to rainfall rates in Spain!"). Before you waste time
generating an elaborate new kind of report, ask yourself the following questions:

1. What questions can we answer by looking at this chart?

2. How will the answers to those questionshelp us ship on time, on quality? How will
the answers help us meet specific exit criteria or project goals?

3. If the number goes up, what does it reallymean? Down? Stays the same?

4. At the end of each day/week, will this help us understand how much closer we are to
completion?

Keep it simple

The simplestand most important trends can be tracked using an activity chart. For each
dayof the project, the following statistics are pulled from the bug database and displayed
as line graphs:

• Active. The total count of active bugs that have not been fixed or resolved.

• Incoming. The total count of bugs opened on a given day (before triage).

• Fixed. The total count of bugs fixed on a given day.

In Figure 15-7, you can see the basicactivity trends for a mid-size project in the early
days ofend-game fora milestone. There are a highnumberofactive bugs and a relatively
high incoming rate. Toward the middle of the chart (from left to right), a major test pass
begins, and the incoming bug rate climbs dramatically (as doesthe active bug count).
Finally, after the test passis completed, the fixed rate passes the incoming rate, and the
active bug count begins to drop. From this simple chart, you can see the core

relationships: incoming versus fixed defines the core trend of work completion.

Evaluating trends

All charts or analysis techniques will tell you one of two things: there is more work to do
or there is less work to do. For example, if the count of active bugs continues to climb, it

means the pile of work is growing faster than it's being emptied, and new issues are still

being found at a high rate. Alternatively, if the active count is on a trend of decline, work

is being completedfaster than new issuesare being discovered. In either case, the goal of

8 Twobooksworth looking at if you need this kind of rigor: TomDeMarco's Controlling Software
Projects (Prentice Hall, 1986)and Volume 1, Systems Thinking, of GeraldWeinberg's Quality Soft
ware Management (Dorset House, 1991).

31H CHAPTER FIFTEEN

¥S0

¥00

3ST0

300

ISO

*oo

nro

too

TO

T»>« Cet*Y5>

FIGURE 15-7. A basic bug activity chart.

trend analysis is to understand, for any given attribute, which of the three states the

attributes are in:

• Things are getting worse. This is acceptable, and even desirable, in the early test
phases of a project. If major test passes are were recently completed, it's natural for
bug counts to rise much faster than the programming team can handle.9 Sometimes,

integrating components might come in later than planned, forcing bug discovery to
happen later in the process. What's important is to understand why things are getting

worse, how much worse they're getting, and what should be done (if anything) to

change the trend.

• Things are staying the same. Because old bugs are being fixed and new bugs are

being found concurrently, it's entirely possible for a team to appear to tread water.
Active rates might hold steady even though programmers are cranking away. If ever a
key measurement is hovering, examine what inputs and outputs contribute to the
measurement to understand what needs to happen to turn the corner. It's important

to communicate this to the team. Many programmers panic when they're cranking

away because they don't understand why the project isn't moving forward (or worse,

why it is slowly sinking).

• Things are getting better. When the trends become favorable, it's important to eval
uate the rate of acceleration and the trend line to the end of the milestone. A positive

trend might not be positive enough to meet the exit criteria. If the trends become posi

tive early, be suspicious: have all test passes been completed? Are there untriaged
bugs? Is bug fix quality high? Make sure you understand exactly what is causing the
trend to improve before you assume that it's good news.

9 Test driven development is one useful approach to dealing with engineering quality earlier on,
and avoiding big waves of incoming bugs. See http://en.wikipedia.org/wiki/Test_driven_
development.

END-GAME STRATEGY 315

Useful bug measurements

There are some common measurements that prove useful to end-game tracking. It's
worth finding a way to generate these stats automatically so that if they are needed to
help make a decision, time won't be wasted buildinga new database query.

• Fix rate. The rate at which a team fixes bugs is calledthe fix rate. Becausenot all bugs
are equal, this rate is the time required to fix a bug of average complexity. If the fix
rate is behind the incoming rate, and all incoming bugs must be fixed, the project can
never ship: there will always be more bugs.

• Incoming to approved. How many new bugs need to be fixed and are not dupli
cates of other bugs, or priority 3 and 4 issues? Knowing the incoming-to-triaged ratio
helps to make estimates against untriaged bugs. Generally, bug quality should decline
over time: the rate of good priority 1 and 2 bugs will slow. The raw incoming rate
won't tell you when this is happening.

• Active bug time. The average time for how long bugs have been active. This indi
cates the team's responsiveness and how the team is handling its current workload.
Response time should increase as you get closer to dates because the team should be

managing fewer bugs and should be more aggressive at triaging and attacking incom
ing issues. If response time is slow, people are busy.

• Bugs per developer. Load-balancing a development team requires tracking how many
active bugs each developer is currently working on. It's also worth noting what percent
age of activebugs are currently assigned to testers, developers, or PMs. Bugsassignedto
PMs or testers are not in the pipeline, and they should be triaged periodically.

• Fault Feedback Ratio. Weinberg callsthe rate of regressions caused by a bug fix the
Fault Feedback Ratio (FFR).io If each bug fixed causes two additional bugs, the FFR is
2.0. According to Weinberg, an FFR of .1 to .3 is a baseline acceptable rate; anything
higher means that quality needs to be improved (and/or the pace needs to be slower).
Most bug databases allow for new bugs to be linked to existing ones, making it possi
ble to track the FFR. However, I've never seen this automated—it's only judged sub
jectively by those performing project-wide triage. (Note that sometimes fixing one bug
can cause previously hidden bugs to surface. This shouldn't count in the FFR.)

Elements of control

Controlling projects is much harder than tracking them. Evaluating good data is a matter

of deduction, but figuring out how to respond to trends requires intuition. Projects take

on their own momentum, especially in end-game, and they can't be directed so much as

influenced. When the activity is focused on working with bugs, there are many

individual decisions being made across the team, and it requires constant communication

10 From Volume 1, Systems Thinking, of Weinberg's QualitySoftware Management, p. 250.

316 CHAPTER FIFTEEN

and reminders to keep people making those decisions with the same attitudes,

assumptions, and goals.

The best way to think about elements of control is frequency of use. Some high-level
activities, such as management review, are only needed once every month. For others,
such as triage, it can be a day-to-day or hour-to-hour activity. Depending on the degree
of control you need, the time intervals of control are your most important consideration.

Review meeting

Thisis primarilya mid-gamecontrolmechanism. A reviewis when the team leadersmust
present the state of their project, compared againstgoals, to senior management, clients,
and the entire team itself. The review should serve as a forcing function to discuss what is

going well, what isn't, and what is being done about it. The format of the review can

really be this simple. The best reviews I've participated in cut straight to the core. There
was enough maturity in the room that oversights were volunteered (not hidden),

requests for help honored (not ridiculed), and attention paid to the things that mattered

most (not what made people look good or feel happy).

The review discussion should force the team to evaluate goals, timelines, technologies,

and roles realistically. Nothing should be spared in a review. Any issue that is impacting

the project should be open for discussion. For this reason, the review meeting is an

element of control, and not just tracking, because it provides a forum for leaders and

senior managers to discuss adjustments that need to be made involving any aspect of the

project. Regardless of the meeting size, a summary of the discussion and slidesused in the

presentation should be given to the entire team in a separate forum afterward.

Teams should have reviews scheduled at periodic intervals during the course of each

milestone. It should be public knowledge when they will occur, as a team meeting should

follow it. Multimonth projects should have a monthly review. Multiweek projects should

have a weekly or biweekly review. The more frequent they are, the more informal and

fast they can be.

Customer/client reviews

If you are a contracted team, or have internal clients, review meetings can serve as one

way to get direct feedback from your customers. Most of the advice just described still

applies. One additional point is that you should never depend on these meetings as the

only source of feedback from customers. The intervals between meetings will always be

too long, and the formality of meetings can make it difficult to go very deep or to discuss

complex issues.

END-GAME STRATEGY 317

One important aspect of XP is that it encourages a representative from the customer to
participatedirectly in the development of the software, n That person should use the
dailybuilds and develop relationships with the programmers and their leaders. It makes it
possible for your team to get feedback on issues on a daily or hourly basis, rather than
weekly or monthly. Defining this relationship canbe tricky the first time (see the section
"Defining roles" in Chapter 9),but it will always payoff in smarter decisions and happier
customers.

Triage

Anyprocess where you takea listof issues and put them in orderofpriority is a triage
process. What makesreal triage different from other kinds ofprioritization is that you're
dealing with a constant inflow of new issues that need to be understood and then

prioritized against all other concerns. Triage takes places throughout mid-game whenever
there is an interim date that needs to be hit and a qualitymetric in the exit criteria.
However, triage becomes a primary taskfor the teamduring end-game, oftenconsuming
a significant percentage of daily work for PMs and others.

The goal of triage is to manage the engineering pipeline (described in Chapter 14) in a
way that maximizes the value of the work done toward the exit criteria for the milestone.

Doing this successfully requires three things:

• Sanitize. Incoming bugs will always vary in importance. Someone has to review new
bugs, and get the information in themto a quality level suchthat it canbe assigned to
a programmer and she can investigateand fix it. Some bugs require programmer
investigation, but most filtering involves trivial things: filling in empty fields (severity,
priority, etc.), improving repro cases, confirming it's not a duplicate of an existing bug,
etc.Thisis often just gopher work: phone calls, emails, and time with the specific build
to track down information.

• Investigate. Afterbugs have been sanitized, the investigative work begins. Do we
need to fixit? Does it violate the spirit of the requirement/specification? What compo
nent causes this issue, and what wouldbe involved in fixing it? There may be many
questions that need to be answered before a good decision can be made. Some consid
erations are technical, others are not.

• Prioritize. Afterbeing sanitized and investigated, bugscan be prioritized and put into
the pipeline at the appropriate level of importance.

What makestriage difficult is that to do any of these three things well requires more
knowledge than any one personhas. Thelarger the project, the less likely it is that any
one person can effectively do triage alone. So, for most teams on most projects, triage is a
group activity. Early on, it might be fine for individuals to triage their own bugs, but later,

11 See Kent Beck's Extreme Programming Explained (Addison-Wesley, 1999), p. 69.

318 CHAPTER FIFTEEN

the focus shifts to small groups and subteams. This is why bugs have to be organized
around specific project areas (see the earlier section "Bug/defect management"). It makes

it easy for small groups of people responsible for that area to get together and triage

independently of the rest of the team.

Near the end of end-game, when every bug decision is scrutinized, there should be one

triage effort for the entire project, and it must be run by a core group of team leaders (see
Figure 15-8; we'll discuss this in the upcoming section "War team"). For now, it's

important to identify the two primary kinds of triage: daily and directed.

XndividoaJ 4ria.§e

Area, •/ria.^e

\jdar -/earn

FIGURE 15-8. Triage becomes centralized as end-game progresses.

Daily/weekly triage

Daily triage is the routine process for dealing with incoming and active bugs. Depending

on the timeline, this may need to be done once a week, once a day, or once an hour. The

further into end-game you are, the more frequently the pulse of triage needs to occur.

The goal of daily triage is simple: keep things sane. The programmingteam is the critical
path for the end-game of the project, and triage is the only way to keep their pipeline
healthy. Every new bug must be sanitized and compared against the existing pool,

preferably before they land on an individual programmer's plate.

Sometimes, it's best (in terms of team efficiency) to have one person running point for

daily triage for each area. Assuming programmers and testers agree on the criteria, one

person can be responsible for sanitizing new bugs, marking duplicates, and adjusting

priorities of incoming bugs. PMs are good candidates for this, assuming they are technical

enough to understand the issues and make basic bug decisions.

Otherwise, triage should be done in a small meeting, with representatives from

development, test, and PM. If other experts on staff are needed—such as marketing,

design, or usability—they can be called in as necessary. The meetings should be short.

Anything that can't be resolved in minutes should be assigned to a programmer to

investigate.

END-GAME STRATEGY 319

The triage field should besetonbugs when they've been triaged. This gives the project an
additional view ofbugdata, asyoucanthen separate the amountof triaged bugs (known
goodbugs) fromthe total amount ofactive bugs (unknown qualitybugs).

Directed triage

Directed triage isa focused effort to meeta specific goal. This isdonein addition to daily
triage. Directed triage is one control, at the projectlevel, to help push things forward and
improve the value of bug charts and trend analysis. Here are some common reasons for
directed triage:

• When ratio of triaged-to-active is low. If there are 500 active bugs and only200
havebeen triaged, there isno wayto knowthe significance of the remaining 300
bugs. They could allbe priority 1 system crashes, or they could allbe duplicates: you
have no idea. A directed triage wouldhave the specific goalof eliminating all untri-
aged bugs by a certain time (noon tomorrow). If this is a chronic problem for a team,
there should be a goal of no active untriaged bugs older than a certain amount of time
(24 hours).

• When exit criteria change. If teamleaders decide to change the exitcriteria, triage is
the only way to bring the project in line with those changes. It's common to use new
exit criteria as a way to change the angle ofdescent, eliminating certainclasses ofbugs
fromconsideration to improve the safety of the angle (but reducing qualityin the
process).

• Unclosed counts are high. When a bug is fixed, it should be set to status = resolved,
and assigned back to the person who opened it to make sure it reallywas fixed. Some
percentage of these bugs might not have been fixed correctly. If these bugs sit as
unclosed, there is a pocketof bugsthat need to be fixed that are not being reported in
the active bug counts. Depending on your bug-tracking system, there may be other
places bugscan hide. Periodically, you need to drive the team in flushing them out.

War team

As a project nears completion, the distribution of authority has to centralize. Unlike

feature design and programming, which can be reasonably distributed across a team, the
margin for error decreases toward the end. Decisions become increasinglysensitive—it's
detail work, not construction. The Microsoftterminology for this centralization of control

is called war team (borrowed, I believe, from the military term war room, where leaders

meet to decide important issues). A small group of team leaders becomes a dominant

executive branch of power. On small teams, a formal shift in power might be
unnecessary, but on large teams, this shift is essential. It raises the bar on all decision

making and provides a forcing function to the team that the game is ending.

320 CHAPTER FIFTEEN

The actual war team meeting is simple. All you need is a conference room, a senior

member from each staff (programming, test, PM or other peer leaders, and possibly the

group's senior manager), and a computer hooked up to a big monitor so that the entire

room can see the bug or issue being discussed. For an issue to pass war team, senior

members must all agree (some teams opt for a two-thirds majority or give war team

members veto power). War team agenda is decided each morning, and any issue can be

placed on the agenda. Like a court of law, anything they accept or deny sets precedence

for the rest of the team. War team meetings should be open to the team, with priority

given to people who are presenting specificDCRs (see the previous chapter) or proposed

bugs for review.

War team should set a very high bar. Anyone showing up to war team not prepared or

lacking answers to basic questions (what exit criteria does this meet? what regressions

might this cause? do the programmer and tester both agree that this should be fixed?)

should be told to go away and come back when he is ready. War team time is precious

because the team's time is precious. Every PM and programmer should be highly

motivated to have her story nailed down and rock solid before she asks for war team

approval. This pressure creates a natural incentive for the entire team to think hard about

issues on their own before they choose to bring it to war. (Be careful: war team meetings

can be highly charged, and there's plenty of opportunity for grandstanding and

egocentric time wasting. It's up to the group manager to squash destructive behavior

early.)

The team should have fair warning about what and when the war team will be involved.

In Figure 15-9, some basic staging is shown for what things need war team approval. The

goal is to have a gradual centralization of authority with public dates for when those

shifts occur. The approval of DCRs is often the first use of war team because these can

occur early on, during mid-game. Later, when the bug count needs to be tracked tightly,

approval for putting bugs into the programming pipeline shifts to war team (previously

approved bugs should generally be grandfathered in). Finally, in the closing weeks or

days, war team reviews all incoming bugs, and project control is effectively centralized.

*«%t%

All1>CR% *jar4ea.m Approved.

Allneio hv$s tdar-fea.m approved.

Central kJar 4-ea.m •/ria.^e.

FIGURE 15-9. War team increases in authority as end-game progresses.

END-GAME STRATEGY 321

War team meetings can start out weekly, but they should soon shift into daily half-hour

or one-hour meetings. It's up to the war team to make sure these meetings start and end

on time (someone should own clarifying the agenda before the meeting starts). If the goal

is making good decisions toward the exit criteria and goals, it's possible to review many

DCRsand to triage many bugs in 60, if not 30, minutes. The secret is to avoid end-game

micromanagement.

War team does not need to know the workings of every bug or every issue. On the

contrary, they only need to make sure the decisions made are in the best interest of the

project, that the right questions have been well asked and answered, and that the right

bar is set for use of the remaining time. War teams fail to be expedient when leaders fail

to trust their teams. If an issue is really heinous, it should be taken offline to be discussed

with one member of war team, and the next day it should be brought back with an

improved presentation.

Between project goals, exit criteria, precedence-setting bug decisions, and team

communications, there are many opportunities to push decision making out to the team.

Sometimes the war team approval process can be automated, with web forms allowing

war team members to approve items remotely on their own time. Be clever. Find ways to

avoid making war team an unnecessary or unintentional bottleneck.

In general, the fewer issues war team needs to manage, the better the job senior

management has done in planning, executing, and leading the team through the project.

If war team meetings regularly are brutal, three-hour marathons, leadership has failed in

one or more ways, and there are lessons to be learned for the next project.

The end of end-game
The closing period of an engineering project is a difficult and mind-numbing process. Jim

McCarthy, in Dynamics of Software Development (Microsoft Press, 1995), refers to it as

working with Jell-O. Each time you fix a bug, you're effectively touching the big cube of

Jell-0 one more time, and it takes awhile for it to stop shaking and settle down. The

more touches you make, the more variance there is in how it shakes, and the more

complex the interaction is among the ripples of those changes. A web site or software

product is essentially a huge set of highly interconnected moving parts, and each time

you change one, you force all kinds of possible new waves of behavior through it. But

unlike Jell-O, with software it's not easy to know when the shaking has stopped. Code is

not transparent. It's only through quality assurance processes, and careful manual

examination of the builds, that you can understand the effect of that one little change.12

12 Of course, the better engineered the software is, the easier it is to predict the impact of the
changes.

322 CHAPTER FIFTEEN

This means that the true end of a project is mostly a waiting game. Hours and hours are

spent reviewing new bug reports or issues and scrutinizing them to see if they meet the
bar for shaking the Jell-O all over again. On larger teams, it's war team that bears this
burden. Although the rest of the team should be actively scouting for new issues and

using latest builds, everyone can contribute to the waiting game in some way.

But when there's a bug worthy of shaking the Jell-O, everything goes into full gear again.

War team goes through the process of leading the team (or, more specifically, the

programmer) in understanding the issue well enough to make a surgical change. Then

the suite of tests and conditions have to be run again to ensure that things are exactly as

they were before, except for the tiny little thing that needed to be changed. It's a very

stressful process. Unlike the full-on charge of mid-game, or the fun of finding bugs in
early end-game, the stress in the final days can't be relieved by indulging in big piles of

work. Everything is very small, and the pressure has nowhere to go.

There are different measurements and moments of significance in this process, but they

don't do much to change the nature of the work. They are simply intermediary

milestones along the way to releasing. If nothing else, these markers break up the

stressful monotony of late end-game work.

• Zero bug bounce. When the active and approved (by war team) bug count reaches
zero, the team is said to have hit zero bug bounce (ZBB). This is called a bounce

because as soon as the next bug comes in, the team is no longer at zero bugs. There
are some pet theories as to the distance between ZBB and actual release, but none of
them is strong enough to be listed here.

• Zero resolved. Resolved bugs may be hiding issues the team doesn't know about.

Until it's been closed (and verified), it's not certain that a bug was actually fixed in the

way it was supposed to be. Hitting zero resolved and zero active means the project is

truly at a state of possible completion.

Incoming and active bugs make for poor measurements at this point because they are

beneath the criteria for consideration. Even though the team is actively investigating

these bugs, until they are brought to war team, they effectively have no impact on the

progress of the project.

The release candidate (RC)

The first build of a project that has met all exit criteria is called the release candidate. As

soon as this build is made, a new exit criterion must be added: what problems found in

this RC build will warrant the creation of a second release candidate? If there are no

criteria, assuming the RC build passes all verification and QA tests, the build is propped to

the Web or put on CD, and delivered to customers.

END-GAME STRATEGY 323

If there is a definedRC criterion, and the RC fails that criterion, the end-game process
repeats. War team decides on what investigation, design, and implementation should be

done, the change is approved and made, and the process repeats.

In the software world, particularly the shrink-wrappedworld, RCs are expensive. There
are often additional tests and procedures that the build must go through to verify setup,
localization, branding, and other issues. For the Web, it all depends on how the project
integrates into other projects. There may be a similarly complex tree of dependencies that
has to be managed.

Rollout and operations

When a final RC build is completed, only some of the team gets to celebrate. Depending
on the nature of the project, a final RC may kick off a whole new series of work. The test

and QA teams may need to go into high gear to evaluate server loads or other kinds of

capacity issues that can be tested only with a final build. These issues can certainly be

planned for, but the testing can't begin until the bits are in place.

Most web sites or web-based projects stage their releases through a sequence of test

servers, where different conditions and integration work are given final test coverage.

The more platforms or languages the project must cover, the more complicated the

rollout process will be. Of course, the time required for proper rollout can be estimated

and planned for during initial planning. Depending on how it's organized, the burden of

rollout and operations might be isolated to a subteam or shared across the entire project
team.

The project postmortem

As completion of a milestone or an entire project nears, someone must set up the team to

learn from what was just done. This is often called writing a project retrospective or

postmortem (in reference to the medical term for learning from something that ended).

The hard part of doing this is that you want to capture information when it's still fresh in

people's minds, but when people are getting ready to celebrate and wrap things up, they

rarely want to go back and think through all the problems they've just dealt with. Most

people want to move on and leave the past behind.

This is where leadership comes in. Team leaders must be committed to investing in the

postmortem process. As things wind down, leaders should be asking people to start

thinking about what went well and what didn't, even if it's just in the form of their own

private lists. A plan should be made for team leaders to collect these lists and build a

postmortem report. The report should have two things: an analysis and summary of

lessons learned, and a commitment to address a very small number of them in the next

project (if you pick a big number, they won't get addressed—prioritize and focus).

32H CHAPTER FIFTEEN

It can make sense to hire a professional to do the postmortem work for you (or get

someone not on your team, but in your organization).13 They come in, spend a week

interviewing people on the team, and build a report based on what was learned, filtered

through the consultant's expertise. This has the advantage of an objective perspective, as

they will notice and voice things others will not.14 More important, perhaps, they bring

outside expertise into the organization, applied to the needs of a specific project and

team.

Party time
When a final RC build is confirmed and makes its way through the staging process, out to

the world, it's time to celebrate. After many weeks, months, or even years, whatever it

was you were supposed to have made has been finished. It's a rare and special thing to

finish a project: in the tech sector, most projects never get anywhere near this far. As PM,

it's your job to make sure there's an opportunity for everyone involved to celebrate

together. Avoid corporate or organizational cliche (it's impossible to celebrate in a

conference room). Instead, go to the nearest pub, reserve the big table at your favorite

restaurant, or invite folks over to your home. Drink and eat better than you have in a

long time (and eat and drink more of it). If you're not the festive or social type, find out

who on the team is, and conspire with them to organize something.

Completing projects doesn't happen often in most lifetimes. Creating good things that

other people will use in their lives is an incredible challenge. It's a time worthy of

extraordinary celebration: live it up!

Summary
• Big deadlines are a series of small deadlines.

• Any milestone has three smaller deadlines: design complete (specs finished), feature

complete (implementation finished), and milestone complete (quality assurance and

refinement finished).

• Defining exit criteria at the beginning of milestones improves the team's ability to hit

its dates.

• Hitting dates is like landing airplanes: you need a long, slow approach. And you want

to be ready to take off again quickly, without having to do major repairs.

13 See http://www.scottberkun.com/essays/ for some advice on doing postmortems well.

14 The leaders of a project will have strong emotional investment in what happens and will strug
gle to be objective. However, an expert outsider has no emotional investment or personal his
tory, and therefore has better odds of successfully examining, understanding, reporting, and
making recommendations about the project.

END-GAME STRATEGY 325

• You need elements of measurement to track the project. Common elements include
daily builds, bug management, and the activity chart.

• You need elements of control to project level adjustments. Common elements of con
trol include review meetings, triage, and war team.

• The end of end-game is a slow, mind-numbing process. The challenge is to narrow the
scope of changes until a satisfactory release remains.

• Now is the time to start the postmortem process. Give yourself and your team the ben
efit of learning from what went well and what didn't.

• If fortune shines on you, and your project makes it out the door, be happy. Very, very
happy. Many people, through no fault of their own, never get that far. Plan a grand
night. Do ridiculously fun and extravagant things (including inviting this author to the
party). Give yourself stories to tell for years to come.

Exercises

A. Next time you work on a project that is in end-game, start making a list of tracking
data you wish you had during the project. Make a commitment to record that data

from the start of the next project.

B. As an experiment, next time exit criteria are created, demand that the authors of the

criteria attend the first bug triage meeting, using the criteria. This should force them to

put the criteria in practice themselves, providing a great opportunity to refine them
early in end-game.

C During triage, one programmer insists on deciding the fate of every bug. He bullies,
ridicules, and does everything he can to have his opinion reign supreme. The problem
is, he's right most of the time. What should you do?

D. Early on in end-game, your team is excited about being in the last stage, but you're
burnt out. It's taken all of your energy to get the project this far. Are you honest with
your team, or do you try to hide it? How can you recharge?

E. Pick another industry: how do they manage the last part of their project schedule?
Interesting examples include the film industry, any special operations military group
(Navy SEALs, Ninjas, Spartans), or even your favorite take-out restaurants. Do a short

presentation for your team on how your methods compare with theirs.

F. You are two days away from releasing a major update to your news web site, used by
millions of people. The champagne is ready and waiting. But then an engineer
discovers a major problem that will take three days to fix. The problem is $10 million
in advertising for the specific launch day and time has already been paid for. What do
you do?

326 CHAPTER FIFTEEN

G. Imagine you are one of the five leaders who runs the war team meeting. At every

meeting, also attended by many junior members of the team, a big argument breaks

out between the 5 leaders, sometimes lasting 10 minutes or more. What effect does

this have on the team? Make a list of different approaches you could take, both in the

meeting and after the meeting.

H. Pretend you have just released the most important software in the history of the

universe. Your team photo is on the cover of Time magazine, and you're all famous.

How would you celebrate? How much would you spend? Where would it take place?

Now think of your current project. It might just be the best software anyone on the

project has released: don't they deserve a special way to honor their achievement?

END-GAME STRATEGY 327

illiiii!

Igjllj

m ~0l

^m^MMM ^MM^w

CHAPTER SIXTEEN

liliiBliiiilitf^
lj||||8ii|jij|^j

Power and politics

A nytime you try to organize people to do anything, whether it's throw a party or start a

company, there are different attitudes, desires, and skills among the individuals involved.

This means no matter how talented a leader is at running a project, there will be people

who do not receive everything they want. Thus, there is a natural instinct for motivated

and ambitious people to try and get what they want by influencing people who have the

power to make it happen. This, in the simplest explanation I could fit in a paragraph,

explains why politics exist. It's a by-product of human nature in group interactions that

we experience the frustration and challenges of political situations. Aristotle said that

"man is a political being," and this is in part what he meant.

"Every management act is a politicalact. Bythis Imean that every management
act in some way redistributes or reinforces power."

— Richard Farson, Management ofthe Absurd: Paradoxes in Leadership

The fuel that drives politics is power. Roughly defined, power is the ability a person has

to influence or control others. While we tend to look at organizational hierarchies to

understand who is powerful and who isn't, often power structures do not directly match

hierarchies (as described in Chapter 12, earned power is different from granted power). A

person who can persuade the right people at the right time, and apply her knowledge to

resolve situations to everyone's satisfaction, can be more powerful in an organization

than her superiors—sometimes without them recognizing it.

This fact adds complexity to organizational politics—individuals are free to cultivate

power independent of the hierarchy. To make this even more difficult, depending on the

particular issue, power is distributed differently across the team. For engineering

decisions, Harold might have the most power, but for business issues, it's Maude. All

combined, the complexity of typical project organizations creates political opportunities,

but it also makes competition for power inevitable.

For project managers, this means two things. First, there will be political influences that

impact you no matter how powerful or ethical you are. Second, power and politics are an

inherent part of management. You must at least be aware of how political systems work

if you want to diminish their negative effects, much less enhance their positive ones. This

chapter will provide core lessons of applied project politics. I'll cover how to diagnose the

political landscape you are in, the common situations and why they occur, and how to

solve problems of politics and power.

330 CHAPTER SIXTEEN

The day I became political
My first major lesson about organizational politics came in 1997 from Chris Jones, who at

the time was group program manager for Internet Explorer. The group had gone through

a chaotic couple of months, with several reorganizations and direction changes, and

things still hadn't settled down. There was one particularly important role on the team—

responsibility for a feature called channels (part of the ill-fated "push technology" craze

during the browser wars)—that had never gone well. This role was so critical to our

plans, and so poorly managed, that the entire team was devastated by it. Many of my

peers and I were upset, but we didn't know what to do. Feeling powerless, we mostly

blamed the politics of our management team. To make matters worse, at the time, I had

the most cynical view of organizational politics. It was something like this:

Politics (n): The things evil, weak, self-serving people do.

I didn't know exactly what those things were, or how they were done, but I was sure the

evil and weak self-serving people in the team (whoever they were) were doing it. I

couldn't precisely identify them because my assessment of people, at the time, had two

settings: smart and moron. I was ignorant and arrogant (interesting how often they come

together). But my saving grace from these failings was that I had the highest opinion of

Chris, and the good fortune to have an office next to his.1 One day, frustrated and upset

by the team situation, I stopped by and told him my concerns about the group. He

listened patiently and suggested we chat over lunch.

During lunch he did the most surprising thing—he told me more than I expected to hear.

He laid out the situation from his perspective, telling me just enough details that I could

understand the primary problems, without betraying the trust of other members of his

organization. He described his high-level assessment of the problem, and the three

reasonable alternatives he had available to solve it. I realized he had his own constraints:

the needs, desires, and goals of his own peers, managers, and VPs. He had the pressure of

our schedule and strategic competition (Netscape). From my viewpoint, I assumed his

world was freer than mine (doesn't more power mean more freedom?), but as he laid it

out, I realized his situation was more difficult than mine.

He then did the second most unexpected thing—he asked me for my opinion. He gave

me a chance to offer my own logic and perspective on the decisions he had to make.

Right then, I had my first political epiphany: this stuff is hard, really hard. By asking what

1 Never underestimate the value of a well-placed workspace. I learned much about what was
going on above me in management from that location. It enabled me to have informal chats
with all kinds of people who were looking for Chris and to innocently overhear important hall
way conversations. The downside was that the big boss was right next door. Had it been a man
ager with control or micromanagement issues, there would be serious downsides to such a
location.

POWER AND POLITICS 331

I thought (and listening to what I said), he defused all of the animosity and finger

pointing that usually comprised my attempts at political thinking. He made me actually

consider the issues and people involved. And when I did, I froze. Like being thrown into

oncoming highway traffic, I didn't know where to start: it all seemed terrifying. I still

remember staring at my half-eaten sandwich, failing to find anything intelligent to say.

The conversation moved on, lunch ended, and I went back to work. I've learned much

since then about how organizations function, but I look back at that day as an important

change in perspective. Here are three key points I've learned since that day:

• Politics is not a dirty word. In most dictionaries, the first definition of the word

politicsyou will find is something like this:

Politics (n): The art or science of government or governing, especially the

governing of a political entity, such as a nation, and the administration and

control of its internal and external affairs.

You won't find anything like my cynical definition, until the fourth or fifth definition

listed in most English dictionaries. Politics is the skill of managing people and organi

zations. It is possible to be effective politically without resorting to unethical or sneaky

behavior.

• All leaders have political and power constraints. We like to believe that power

figures—like corporate VPs or the President of the United States—have tremendous

power. They do, but much of it is power through influence. For example, the U.S.

President is one of three branches of government (executive), and his power is

checked and balanced by the other two branches. Many of his official actions can be

vetoed. Most corporate VPs have senior managers reporting to them who don't like to

be told what to do, and they demand significant amounts of their own authority. And

on it goes down the chain of command. So, when you look at people who have more

power than you, don't assume omnipotence.

• The ratio of power to responsibility is constant. One way to think about power is

through its relationship to the challenges you're expected to meet using that power.

Say I was the CEO of ExampleCorp, and I gave you $5 to go get me some coffee. The

authority you have is small (although there is some), but so is the responsibility. On

the other hand, if I gave you $2.5 million and a staff of brilliant minions, I'd probably

ask you to plan, build, and manage an entire business. Responsibility, stress, and chal
lenges generally increase in relation to the amount of power you're granted. For this

reason, having more power rarely makes things easier because the challenges increase

as a result of the increase in power.

• Politics is a kind of problem solving. No matter what organizational challenge you

face, and how frustrating it might be, it's just another kind of problem to solve. The

micromanagers, the randomizers, and the brown-nosers are all just different kinds of
obstacles to overcome or work around. As good or bad as things might be, there are

probably a finite number of realistic choices anyone in power can possibly make in

332 CHAPTER SIXTEEN

any specific situation, and they will all have political consequences. If you approach

organizational problems with the same discipline and creativity you approach a design

or engineering problem, you can find those choices and make good decisions (or at

least the best decision possible).

Over time I learned that blaming "politics" for problems I faced was a convenient way to

dodge unpleasant but unavoidable aspects of working with other people. The same went

for pointing fingers at "management," "engineering," or "marketing" and saying how

stupid they were. Pointing a finger doesn't make them any less stupid or ineffective. (If,

in fact, that's really what the problem is. It's always possible they're smart but just as

constrained by political factors as you.)

The same goes for pointing fingers at any individual programmer, manager, or author.

Blame simply doesn't change anything, and it usually blinds you from the real causes and

possible remedies of a situation. Any political or management action that takes place, no

matter how stupid or evil it seems, is always one of a limited number of possible choices

managers have. The alternatives might be even worse for the project than the choice that

was made. Without understanding something of the constraints, judgment will always be

based more on venting frustration than on the reality of the situation.

The sources of power
Power (n): The ability to do or act; capability of doing or accomplishing something. 2

To influence how things happen, you need to understand the dynamics of political

power. Power in an organization centers on what decisions an individual can make or

influence. Think about how decisions are made in your organization: if there is a tough

call that needs to be made, who gets to make it? Who is allowed to be in the room as it's

debated? Whose opinions are heard? Those are people with degrees of power. Having

clear authority to make a decision is the most basic form of power, but having access to

that decision maker so that you can ask questions or make suggestions is another form of

power. As I covered in Chapter 12, granted power is the most obvious form because it

comes down through the hierarchy. It is implied in people's job titles or other symbols of

seniority. Granted power almost always comes to a person through someone in a higher

position of power. The VP grants power to those who work directly for her, and those

individuals grant power to those who work for them. The VP could decide to give certain

individuals more power than others—if that was in the best interest of her goals.

Earned power is distributed organically. Because reputation and ability are subjective

(compared to job titles and hierarchy), each individual in a project plays a role in

determining who has earned power. For example, let's say that Tyler is a programmer on

2 From the RandomHouse College Dictionary (1999).

POWER AND POLITICS 333

the team. Maria and Jack think highly of his opinions, but Chloe does not. If a debate

ensues between the entire team, Maria and Jack will tend to lend more credibility to

Tyler's arguments than Chloe will. In a sense, Maria and Jack will tend to transfer some

of their own power to support Tyler's arguments. So, earned power is often granted to an

individual through the behavior of those around him. In such a case, earned power can

be distributed across lines of hierarchy. For example, a senior manager in one

organization might think highly of a junior employee in another.

Although it's common for some individuals to have earned more trust and power than

others, it's always subjective and relative. Different outcomes are possible depending on

the domain of the decision, who's in the room, and what power he has. Some say this is

what makes politics interesting: power is constantly flowing through a team, changing

directions, and supporting or working against different people at different times. Because

power isn't always obvious until it's been used, it's easy to misinterpret who has what

kinds of power.

For the sake of completeness, the following list offers specific definitions of different kinds

of power (this list is a loose interpretation of a list found in PowerPlays:A Guideto

Maximizing Performance and Success in Business, by Thomas Quick [F. Watt, 1985]). I won't

refer to these much, but it's worth considering who in your organization possesses them,

and how they are used:

• Reward. The ability to grant people bonuses, raises, tasty bits of food, or any visibly

beneficial reward. Because people know you have this power and want to be recipi

ents of it, they will tend to respond and behave differently toward you.

• Coercion. Having control over penalties and the ability to threaten punitive action.

The threat of this kind of power is often sufficient because, unlike rewards, the power

is not in the receiving of good things, but in not having to receive bad things. Coer

cive power can be as simple as the ability to embarrass or ridicule a person in front of

others ("How stupid are you?"), or as official as demoting people or reducing their

responsibilities or salary.

• Knowledge. Having expertise in a subject area, or having specific information that is

relevant to a decision, affords power. By controlling how that expertise is applied, or

how/when information is disseminated, one can develop power. In the simplest form,

just being smart, knowledgeable, and good at problem solving with whatever you're

working on affords power because people will listen to you and respect your opinion.

In more complex forms, having information affords power because your view of the

world is more accurate than others'. And if you are feeling manipulative, you can dis

tort other's perceptions of the state of the project or the world.

33H CHAPTER SIXTEEN

Referent. Who you know and how you know them. If people know you have the

support or friendship of those with power, some of it is referred to you. For example,

if you introduce yourself as "I'm Steve, I work for Bill," you are banking on Bill's

power and reputation to help provide you some of your own. Referent power can also

come from people who have allied with you or offer you support.

Influence. Some people possess the ability to persuade others, which may not be
related to their knowledge of the issue in question. A combination of communication

skill, confidence, emotional awareness, and talents of observation contributes to the

ability to be influential. Influence may be fueled by respect people have for your

knowledge, or because they trust you, or even simply because they think you're

attractive, smart, or interesting. Influence can also develop as a result of a debt: some

one may owe you a favor, and influence on a decision is a way to help pay it back.

Note that some individuals will have more influence over others—it's a highly rela

tive, not absolute, form of power.

The misuse of power
"If you don't know what you are doing, what will deliver which value to whom,

and how it will be implemented, the project self-organizes around some other

goal or goals. Typically, political wrangling of some kind erupts. This guarantees

pointlessness."

—James Bullock, fromRoundtable on ProjectManagement

When people say politics are evil, they usually mean misuse of power. I define a misuse

of power as any action that doesn't serve the greater good of the project and the people

in it.3 Because sources of power are natural, and the use of it to influence and drive

decisions is a by-product of team-based work, those things can't be evil in and of

themselves. It's impossible to work on a project without individuals who are trying to

influence others and use their own power to move the project forward. (In fact, as we'll

examine, free debate of ideas minimizes politics.)

Misuse of power occurs when an individual is working toward his own interests. For

example, in Figure 16-1, the goals of an individual correspond only loosely to the goals

for the project. Much of his energy will be spent doing what is best for him, instead of

what is best for the project as a whole. This represents a failure of leadership and

management to better align individual and team goals (and rewards) with project goals.

To be fair to leaders, some gaps are unavoidable. People have lives outside of the project.

Individuals have their own personal motivations that may have nothing to do with work

3 I know I'm dodging the ethical debate for what behavior is immoral, or even what kinds of
projects can be said to have evil goals. However, I will say that backstabbing, lying, and inven
tive acts of deception generally work against a project. They take short-term gains at the
expense of long-term team value and trust.

POWER AND POLITICS 335

at all, but which the individual is trying to satisfy through work. However, the role of

management is to look for these gaps and find ways to minimize them. Managers should

at least help employees act on these motivations in ways that don't negatively impact the

project. In the end, if large gaps exist, a natural tension is created for how power will be

applied. There will be strong temptations for people to serve themselves instead of serving

the project.

FIGURE 16-1. Personal motivations must align with the project The less alignment, the more destructive

the political behavior will be.

It's also possible that what appears to be a selfish use of power is simply a disagreement

about what's best for the project. As shown in Figure 16-2, it might be that two people

have different opinions about the best way to satisfy the project goals. Distinguishing

between these two cases can be very difficult because often what's best for the project

may turn out to be better for one individual than another. Discerning when the

motivation is purely self-serving requires knowledge of the people involved, clear project

goals, and a good framework for communicating, debating, and discussing issues.

FIGURE 16-2. Disputes over power can happen for altruistic reasons. Twopeers may simply disagree on

the best use ofpower.

When there are several small teams contributing to the same project, the problems are

more complex. As shown in Figure 16-3, if each individual team has motivations to do

things that are not in the best interest of the project, they will each spend significant

energy on things that don't lead to the project's overall success. This framework applies

equally well to individuals or to entire teams. Whenever goals diverge, the frequency of

power misuse will rise. That is (again), unless the person managing all of these

336 CHAPTER SIXTEEN

individuals or teams actively works to get those teams to collaborate and openly settle

conflicts of interest.

FIGURE 16-3. Thegreater the divergence of interest, the higherthe probabilitythatmisuse ofpower will
occur.

Process causes for misuse of power

A more specific way to think about power misuse is to divide the causes into two groups:

process and motivational. Process causes stem from failures in the way the team or

organization is structured, and it is a kind of management or leadership failure.

Motivational causes are driven purely by individuals and their personal needs and drives.

Most of the time, when power is misused, it's some combination of process and

motivational issues.

Process causes are more dangerous than motivational forces because they are not isolated

to one person's behavior. Instead, a process cause is systemic and encourages everyone

on the team to abuse power or apply it to causes that serve only themselves.

• Unclear decision-making process. If the team knows when a big decision is com

ing, what the criteria are, and who is involved in the decision, there is little need for

fancy politics. Anyone with an opinion will know what forum to present her propos

als in, and what arguments will be effective. But if the process is hidden, is overly

complex, or lacks visible owners for decisions, anyone who cares about the outcome

will be motivated to be more political. Therefore, it's the job of anyone making deci

sions that impact others to clarify how it will be made, who is involved, and what the

criteria are.

• Misunderstanding/miscommunication. Teams that communicate well make sure

that information is not only transmitted, but also understood and, if possible, agreed

upon (see Chapter 9). The poorer the communication habits of a team, the more often

power is applied in ways that don't serve the project. If person A and person B think

POWER AND POLITICS 337

of the project goals differently, but assume the other has the same interpretation,

they'll be working against each other without even realizing it.

• Unclear resource allocation. If the process for how budget, staff, and equipment are

allocated is not defined or made public, everyone will seek out those resources using

any available tactics. It's the job of whoever has the appropriate power to clarify for
the team what the criteria are for the distribution of resources, or how and when pro

posals should be made for acquiring them.

• Lack of accountability. When people are allowed to fail or make mistakes without

taking responsibility for them, politics are inevitable. Without accountability for peo

ple's commitments, few will trust others. Without trust, people will use their own
power to protect themselves from dependence on others or to avoid dependence on

people they don't trust (see the section "Trust is built through commitment" in

Chapter 12).

• Weak or toothless goals. For almost every misuse of power I've mentioned, some

reference is made to serving the project goals. When the project goals are weak (or

nonexistent), these misuses are probable, if not guaranteed. Without the center of

gravity of project goals, there is no point of clarity that everyone can agree on, mean

ing that everything can be debated and interpreted. Even if the goals are strong, team

leaders have to give the goals teeth: actively protecting the goals, updating and revis

ing them to keep them accurate, and ensuring that all decisions are made to serve

them.

Motivational causes for misuse of power

No matter what your philosophy is about human nature, it's reasonable to assume that

all people are self-motivated creatures. Even when we act altruistically, we are serving

our own values on what is good and bad in the world. We are also emotional creatures,

and psychological factors drive our behavior—some of which we are more aware of than

others. Motivational causes are based in simple elements of human psychology:

• Protecting others. If I let this decision happen, the people on my team or my peers

who I care about will suffer.

• Self-interest. I want that raise, promotion, or sense of pride from accomplishing

something that I feel is important or done well.

• Ego. I want to prove how smart I am to myself or everyone else, and perhaps make

sure it's indisputable and dramatically visible how much smarter and better I am than

they are. This project must be at least as perfect as I am, or it should help me to cover

up for how imperfect I feel I am.

• Dislike/revenge. I don't want to work with Fred, or I'm trying to get Fred back for

what "he did to me" on the last project.

338 CHAPTER SIXTEEN

These motivations are not necessarily evil. They cause problems only when they lead to

behavior that doesn't best support the goals of the project. If these motivations can be

managed in a way that doesn't hurt others on the team, they're just another kind of fuel.

Look again at Figure 16-1: if the two circles overlapped by 90%, then effectively, the

individual's motivations are highly aligned with the project's goals. It's the manager's

challenge to keep the forces of ego and self-interest in check at all times. The manager

has to direct the energies of her reports and her team toward helping the project and the

people working on it, instead of working against them.

Preventing misuse of power

The best way to reduce these symptoms is to depend on the project goals to drive the

application of power. If everyone refers to the same goals and inherits their individual

goals from that source (see Chapter 4), political tensions will be minimized. Although

some will debate the means, everyone will be fighting for similar ends. To reinforce this,

at any time during a project, anyone should be able to openly ask the following

questions:

• What are our goals for this week/month/project?

• Are these overall or subteam goals in conflict in any way? How can we manage or

resolve them?

• How will this particular decision be made and who will make it?

• Are your and my powers being applied in a way that contributes to our goals or sup

ports the team?

Even if people disagree on the answers, they're having the right disagreements. It will be

obvious what the true causes of conflict are, and leaders and managers will have the

opportunity to provide clarity, redefine the goals, or make new (possibly tough) choices

in the presence of the people directly impacted by them. On the contrary, misuse of

power is guaranteed if goals are significantly out of date or are radically divergent from

individual to individual or team to team.

Sometimes, managers choose to deliberately set teams up to compete with each other,

betting that the added competition will lead to better work. This can work in some

situations, but it makes the organization more volatile, requiring a stronger leader to hold

it together. There is nothing unique about this. For example, every sports team has

starters and backup players. During every practice, the coach is trying to maintain

internal competition for those starting spots, while simultaneously maintaining a strong

bond across the entire team. Good leaders actively reinforce the right attitudes and

behaviors to keep those forces balanced.

POWER AND POLITICS 339

But unchecked, individuals with competing interests have more motivation to use

political power for their own ends. Instead of competitive spirit focusing on real business

competitors, it's directed at peers and subordinates within the same team. From a holistic

view of the project, this kind of environment is corrupt. Power is not being directed

effectively toward the completion of the project itself. Without strong leadership acts to

refocus the team and level the playing field, downward spirals are probable. Each self-

serving action that goes rewarded (or ignored by management) will encourage others to

do the same. Soon, few people will trust each other enough to be effective, as they'll

always question the ulterior motives of their teammates and superiors.

How to solve political problems
For this section, I'm assuming two things. First, that there are well-defined goals for the

project. Second, that these goals motivate whatever you are trying to achieve. If one or

both of these assumptions isn't true for you, this section will still be of use, but there will

be more work for you to do because you'll have less leverage to make things happen.

The process described here makes the most sense for large power issues and for when

you are in a situation where you need more power than you have. The bigger the issue,

the more faithfully a thought process like this should be applied. The smaller the issue,

the more of these steps you can probably speed through or skip altogether.

Clarify what you need

The only way to be successful in resolving a political problem is to be very clear on what

it is you need, and then develop a plan to get it. The common needs are:

• Resources (money, time, staff)

• Authority to make a decision

• Influence on a decision under someone else's authority

• Adjustment of others' goals to support or align with yours

• Adjustment of your own goals to better align with others'

• Advice, expertise, or support

However you define your needs, prepare to be flexible. Even if you decide that the real

need is resources, while you are seeking them out, do not stop listening for suggestions

from others that satisfy the goals but do not involve acquiring resources. By pushing for a

larger budget or more time, you might force a new idea to surface that satisfies your goals

just as well as more resources would. So, don't fixate on the need itself: it's only a means

to satisfy your goals for the project.

3H0 CHAPTER SIXTEEN

Managing up

The best possible time to do this kind of political needs analysis is at the moment when

your goals are defined. When you're sitting down with your manager to agree on what

responsibilities you have for the next week or month, there's an opportunity to consider

whether you have the authority you need to get that work done. Any support you need

that you don't currently possess should be identified, and your manager can come up

with a plan to help you get it. Some organizations call this activity managing up—as in

you must manage up the hierarchy, instead of down it. Clarifying what you need from

management is the first step in successfully managing up.

The other steps in managing up mostly involve repeating this process at the necessary

intervals. If you can stay in sync with your manager and your manager's manager on

what you're doing and what you need from them, and ensure that it's all aligned toward

the same goals, you're most of the way there.

The simplest way to manage up is to initiate a discussion with your manager where you

propose specifics for the following points.

• What I expect you, my manager, to do for me (e.g., giving guidance, warning me of

things I need to know, supporting my decisions, pointing out areas where I need to

grow)

• The resources I need to meet those goals, and who I need them from

• The level and frequency of involvement I need from you (no involvement? quarterly

reviews? daily status reports? weekly one-on-one meetings? be specific)

By doing this early, you will know exactly how much support you can expect, and where

problems will likely come from. Alarms should go off if your manager is unresponsive,

vague, or defensive about committing to any of your requests. It means you may very

well be on your own or are set up to fail, and that your manager is not actively working

in your mutual interests.

Who has the power to give what you need?

For each kind of power you need, identify the person who can give it to you. The org

chart or hierarchy is an easy place to start, but use it only to refresh your memory on the

players involved (see Figure 16-4). Then ask around to find out who is most actively

responsible for what kinds of decisions (on small teams, it should be obvious, but ask if

you're unsure). Use people who are committed to support you to help sort this out: your

manager, your peers, or reports. It shouldn't take more than a few conversations to

identify the people you need. Sometimes, it's better to seek this kind of information

indirectly because you don't necessarily want to approach the person(s) in question

without a plan. (Avoid odd behavior, such as "Hi Fred. Are you in charge of deciding who

gets new laptops?" "Yes, why?" "Oh, just curious. Bye.")

POWER AND POLITICS 311

^313
jczsczziim

FIGURE 16-H. The relevant source ofpower depends on the situation. The org chart hierarchy is not

necessarily the primaryconsideration. A mid-level person mayhave more power over certain issues than

her boss does.

Understanding their perspective

For any person who has power you need, start by identifying what his goals are. On a

well-run team, this should be easy because his goals are really the project goals at

whatever level of seniority he happens to have. Consider his biases, opinions, and

preferred ways for going about making decisions. The better your relationship is with

him, and the more experience you have working with him, the easier this will be.

Thinking from his perspective, work to see how your needs and goals fit into his. Make

your request derive from some higher-level project requirement or objective that he is

obligated to respect. Instead of saying "I need another programmer," understand that you

can honestly say, "To achieve goals X and Y, my team needs another programmer. Our

project plan didn't anticipate the three requests that came in last week, and as a result,

our goals are currently at high risk." Don't lie or mislead. Be willing to question your

own requests for resources if there are better uses for them on the project. (But if that's

the case, you should be asking for the goals and objectives to change in light of that better

use. "I think our goals should shift. Goal X is less important now. Those resources should

shift to support goal Z." A smart supervisor will reward you for this project-centric

thinking.)

Who do they trust and respect?

If you've identified Fred as the person with the power you need, work to understand

who influences him. It might be a peer, a star on his team, or his own superior. It might

be you—at least for certain kinds of decisions. Consider ways to use the influence of these

individuals to help you make your case. If you have a good relationship with these people

of influence, share your thinking with them and ask for their opinion.

Don't manipulate, lie, or do anything questionable—it shouldn't be necessary. Instead,

position your argument much as you would with Fred, and ask for their feedback. They

may know facts you do not, have perspectives that improve your thinking (including

changing your opinion), or simply have advice for how to pitch your case. Even if you

3H2 CHAPTER SIXTEEN

don't have good relationships with these influentialpeople, you can stillask for their
opinions or observe how they make successfularguments or proposals to Fred.

The illusion of group power

Sometimes, what you need will appear to be governed by a group of people. There might

be a meeting or committee that appears to make certain decisions. Never focus on a

group of people: always divide groups into individuals and consider who has what kind of

influence in that group. Despite how they appear, meetings rarely decide anything.

Often, people enter those discussions with strong opinions and allies to support them,

and the meeting carries out a sequence of predictable machinations. To the uninitiated,

these meetings can appear vibrant and active, but to those with the most power, many of

the arguments were entirely predictable both in nature and outcome. They were fully

anticipated (perhaps using a process similar to the one you're reading now), and good

counterarguments were ready to end the discussions.

The more important or contentious an issue is, the more investment you have to make in

the individuals involved. Pitch ideas blindly to groups only if you're confident you have

the logic, influence, and communication skill to lead a room full of powerful people with

differing opinions toward the direction you think best serves the project.

Make an assessment

Combining everything you've learned in this book, you have to assess what the odds are

of successfully getting your needs met. It's entirely possible that with a given power
structure, a particular need you have is impossible to satisfy. This is not necessarily

someone's failure, any more than an engineering or business constraint is. In assessing
your situation, you should realize that power structures have limitations just like other
structures do.

• Does anyone have the power you need? The resources you need simply might not
be available. They could all be committed to other tasks (and cannot be redeployed) or
the organization doesn't have the resources at all. If you're asking for something
beyond the scope of the organization, be prepared to make extremely compelling
arguments for it. Divide one large request into several small ones, and prioritize them.
Perhaps these smaller requests can be obtained by different people or over a period of
time.

• How successful have you been at getting this kind of support in the past?
Consider your experience obtaining this kind of power. What happened? What went
well and what didn't? If you have no experience with this kind of politics, find some
one who does and get her advice. If you proceed anyway, expect tough odds: who
ever has the power you are trying to use will have experience dealing with people
who want it, placing you at a disadvantage.

POWER AND POLITICS 3H3

How successful has anyone been in getting this kind of support from them? If
no one has been able to convince the team manager for changing the development

methodology, know that if you try to do so, you are breaking new ground. On the

contrary, if you're trying to do something others have done, find out how they did it

and learn from their experiences.

How strong are your arguments? I've had times where I was willing to bet my

entire reputation on a request. I was so convinced that I was right that I used the size

of my commitment to help convince people of its value. Other times I wasn't as confi

dent, and I angled my arguments appropriately. Know where you stand and how you

really feel about what you're asking for. Organize your arguments and points on then-

strength, and focus on the strongest ones.

What approach and style will work best? Will dropping by someone's office and

saying, "I need this" be more effective than making a 10-page report or presentation?

There's no rulebook: consider the culture of the team, and the personalities of the

people involved. What have you seen work before?

Who else is competing for the same resources? Sometimes it's obvious who is in

competition. Budgets are always limited, and it's among your peers that your boss'
resources are divided. If you have good relationships, get together with peers and dis
cuss your various opinions, collectivelystriving to do what's best for the team (the
common manager should lead this discussion, but if he doesn't, make it happen). If
relationships aren't as strong, do it on your own. Imagine their opinions, and as objec
tively as possible, evaluate them in the context of your own. Lastly, consider how oth
ers will perceive your course of action. Willpeople be upset? Angry? Feel you are
betraying them? Nip these things in the bud. Talk to the people involved directly to
minimize the potential fallout.

Is this the right battle to fight? Recognizethat this particular need is one of many
that you have. Using influence and other political strategies costs you time and energy
that can't be spent on other things. Make sure that what you are seeking is the best
use of your resources. For example, you might know that there is a more important
request you will need to make later, so it might be best to save your energy for that

time.

What you can't see hurts you. Always recognize that there are layers of politics and
power that you can't see from where you stand. The larger the organization the more
this is true. Two or three levels above you (if there are that many levels), there may be
a set of struggles and debates over issues that you have no awareness of. Your peers,
who may have different goals, are using their own influence on the same powers that
you are. Consider what might be going on above you and around you, and be on the
lookout for sources of information that might help you improve your perspective.

3«W CHAPTER SIXTEEN

Tactics for influencing power

After you've made an assessment, it's time for action. There are common tactics for

approaching organizational politics and engaging the use of others' power. The following

tactics are the simplest and most common; references for more ways will follow.

The direct request

In the direct request, you do the simplest thing possible: you go to the person who has

the power you need, and you ask him for it. Depending on the approach and style you've

identified (see the previous list) this could be an informal conversation, an email, or a

meeting you've put together exclusively for this purpose. The more formal you make the

request, the greater the odds are that other people will be involved in the discussion. The

less formal, the more direct your conversation and request might be. In Figure 16-5, A

represents the person with the power you need; B, C, and D are other people on your

team.

FIGURE 16-5. The direct request.

The conversation

This is a collaborative variant of the direct request. If you and B are competing for the

same resources and have discussed the matter together, you ask A to meet with both of

you and resolve the issue as a group. Teams that have strong goals and good teamwork

do this kind of thing naturally and informally. They trust each other to work toward the

shared project goals, and they willingly concede valid points even when those

concessions diminish their own power or authority. Strong leaders and managers

encourage this behavior because it minimizes the need for their involvement. The team

will eventually learn to resolve issues on their own (i.e., they learn to replicate the

philosophies of A even without him present), and involve A only when there are

particularly tough decisions that need to be made.

POWER AND POLITICS 3H5

The use of influence (flank your objective)

Instead of depending on your own influence to convince A, invest in the support from

others in the organization to voice similar arguments and opinions. Choose carefully

among the people on your team based on how much influence they have on A. If your

influence is weak, you might need to enlist the support of several people.

In military terms, this is called "flanking your objective." Instead of approaching head-on,

you approach from the side, gaining an advantage. Instead of dealing with your

arguments, A must also respond to the arguments from one or more other influential

people. When these arguments come from people equal in seniority or power to A, they

are harder to refute. (However, be careful when obtaining opinions from people with

greater seniority to A without A present. This can be considered an end-run—an attempt

to circumvent A's authority. It depends on the group culture and A's personality.)

Optionally, this can be combined with the direct request (as illustrated in Figure 16-6).

Other options include how you make use of the influence you've gained. It may not be

necessary to have B, C, and D actually in the room, or even to ever talk to A about the

issue in question. As long as you have their approval, you may be able to speak for them,

telling A, "I think we need to cut this feature. I spoke to B, C, and D, and they all agreed

with me on this decision." Of course, be careful not to misrepresent what they said, and

always be willing to bring those people into the room to settle the matter (effectively

reverting to a conversation).

FIGURE 16-6. Using influence to flank an objective.

The multistage use of influence

When you can't get access to the people you need, work backward down the chain of

influence or hierarchy. If C is the only person A will listen to, and you can't get C alone,

find out who has the most influence on C. Then approach her and make your case. From

there, you can work forward until your influence reaches the point where you need it

applied. See Figure 16-7.

316 CHAPTER SIXTEEN

FIGURE 16-7. The multistage use of influence.

The indirect use of influence

On occasion, the best way to influence power is to put things in motion but stay behind

the scenes. Perhaps A is two or more levels above you in the org chart, and he doesn't

respond well to direct requests from people at your level. Or, maybe A just doesn't like

you or is currently upset at you about some other issue (and you don't think he's being

objective about it).

In this situation, enlist the support of another person to make that request for you. This

could be your direct manager, a peer on your team, or someone who works for A who

happens to have influence on the issue in question.

The less sneaky way to manage this is to frame the entire thing around conversations.

Talk to C and see if she agrees with you. If she does, ask if she'll talk to A about it (see

Figure 16-8). When she goes to A, she doesn't have to lie or mislead: she can make the

argument from her own perspective because she does honestly agree with you and your

request. If A then asks to talk to you about it, or if you ask him about it later, your

argument will have benefited from C's influence.

FIGURE 16-8. Indirect influence.

POWER AND POLITICS 3H7

The group meeting

Meetings are very complex political situations. Anyone in the room can speak up and ask

questions, applying their political power to the discussion in a way that can make things

more difficult. If something important is to be decided, make sure you've evaluated who

will be in the room before the meeting occurs.

Before the meeting, consider what questions are likely to come up, and what kind of

answers each person wants to hear. If you know the people well, you can make good

judgments for what to expect and prepare for all on your own. If you don't, ask around.

Before the meeting, solicit feedback from important people who will be in the meeting.

Get their concerns and big questions early, then either make changes if appropriate or

develop your defense of the current plan. If you own the agenda, plan it accordingly.

Sometimes, setting up a meeting yourself can be the only way to resolve a question of

power. Email rarely works well for complex or subtle issues. Or, perhaps you've

identified that Sally needs to hear from Bob and Mike at the same time to be convinced

that your recommendation should be followed. Running effective meetings is a skill of its

own (see Chapter 10), but for now, realize that the better prepared you are for likely

questions and debates, the easier it will be to run the meeting smoothly and in a

favorable direction. (See Figure 16-9.)

z>

FIGURE 16-9. Thegroup meeting can be an unpredictable political situation.

Make them think it's their idea

In rare cases, you can plant seeds and water them with someone else's ego. It goes like

this: you don't think a direct request will meet with success. So, instead you force a

discussion where you identify a problem and ask for help in finding a solution. You don't

offer the answers yourself, but instead ask questions and make points that lead them

gently toward the outcome you want. Like all manipulations, this can easily backfire, and

it requires subtlety and improvisational skills few possess. But I admit, sometimes it's

effective with senior managers who like to believe they are right all the time.

3H8 CHAPTER SIXTEEN

References for other tactics

The previous list covers only the basics. The subject of political tactics fills many library

bookshelves. The best single resource I've found is Robert Greene's The48 LawsofPower

(Penguin, 2001), but be warned: much like Dale Carnegie's How to Win Friends and

Influence People (Pocket, 1990), you'll feel the urge to shower after you read it. Influence,

by Robert Cialdini (Perrenial, 1998) is more about marketing than office politics, but

some of the psychological principles are similar.

Know the playing field
The last considerations of project management involve the political playing field. The

people who have the most power define what rules the team will follow: how power is

obtained, applied, and distributed. When people act unethically—manipulating and

deceiving others—it's up to those in control to identify and reprimand that behavior. It

should be in their interest to keep the playing field relatively fair and allow the right

people to use the political system to the best ends for the project.

However, if those in power are not careful in maintaining a fair playing field, it's up to

you, one of the players, to adjust to the rules of the game. Either use your power to try

and change the rules, or accept them for what they are. If deceptive and unfair practices

are common, no law prevents you from seeking another job. If you choose to stay in a

tough environment, don't assume others are altruistic if there's no reason to. I'm not

recommending you take a lowest common denominator approach and copy the behavior

of others—that's an ethical choice you have to make for yourself. But I am saying you

need to be aware of what game you're playing and who you're playing it with.

Creating your own political field

No matter how frustrating the politics are, as a project manager you have to control your

own playing field, as shown in Figure 16-10. You also control how your power is

distributed across the team. There are two basic choices you have: make your playing

field a safe and fair place for smart people to work, or allow the problems and symptoms

of the larger team to impact your world. The latter is easy: do nothing. The former

requires leadership and the employment of many of the tactics described in this book.

Good managers always find ways to protect their team. While it's true that for your team

to grow they have to experience tough situations, a good manager protects people just

enough so that they can be effective yet also be exposed to real experiences and learning

opportunities. Similarly, if your manager is doing a good job, she's shielding you from

certain problems and situations and actively working on your behalf to make your world

easier to work in. At any level of hierarchy, this kind of proactive leadership takes more

work and maturity to achieve, but that's the nature of good management.

POWER AND POLITICS 3H9

U)or/d o-f insanity Mm ^^>^_^ff fl «i ^^ <^//is«.«/'/y
and randomness mm ^^ggr m m and randomness

FIGURE 16-10. Youalways have the power to define your own playing field.

So, don't assume that because your manager treats you poorly you should pass that on to

your reports. As a manager, it is you who decides how your own team should be

managed. Don't pass on attitudes, habits, or tactics that you think are destructive. Explain

to your team the differences in working style or attitude, but don't follow along in

behavior that you think is counterproductive.

Much of the advice in this chapter and this book applies at any level of organizational

hierarchy. If there aren't clear goals at your level, create clear ones for your team. If there

aren't clear practices above your level of the organization for how resources are

distributed, you can establish your own for areas you lead. The same goes for project

planning, communication, or decision making. You won't always benefit directly from

these efforts, but your team definitely will. It should be easier for them to be effective and

get more work done because you're providing effective structure that the rest of the

organization doesn't have.4

In the end, proactive leadership in your own sphere of influence is the best way to grow

your own sources of power. Initially, you might lose favor with your superiors for

working differently than they do. But over time, people will like the playing field you've

created. They will be happier and more effective working with and for you than with

others. Unlike with the status quo of the rest of the organization, the quality of your

team's work will continually rise.

Summary
Politics are a natural consequence of human nature. When people work together in

groups, there is a limited amount of authority, which must be distributed across differ

ent people with different desires and motivations.

4 The challenge of pushing for organizational change is significant. Definitely read up on the sub
ject before going too far on your own. Start with Leading Change, by John P. Kotter (Harvard
Business School Press, 1996).

350 CHAPTER SIXTEEN

• All leaders have political constraints. Every executive, CEO, or president has peers or

superiors who limit their ability to make decisions. In general, the more power a per

son has, the more complex the constraints are that they must work within.

• There are many different kinds of political power, including rewards, coercion, knowl

edge, referent, and influence.

• Power is misused when it's applied in ways that do not serve the project goals. A lack

of clarity around goals, unclear resource allocation or decision-making processes, or

misunderstandings can contribute to the misuse of power.

• To solve political problems, clarify what you need. Identify who has it, and then assess

how you might be able to get it.

• If you are involved in project management, you are defining a political playing field

around you. It's up to you to decide how fair or insane it is.

Exercises

A. Is it possible to work with other people and have absolutely no politics? Think of the

work environment with the healthiest political environment. What made it possible?

B. What kinds of power do you use most often? Which kinds of power do you use least?

C. In John F. Kennedy's book Profiles in Courage, he tells stories of courageous senators

who made decisions they believed in despite the political consequences (e.g., the low

chance of re-election). Is it best to try and gain power by doing what you believe in, or

by doing what you think will please others in power? Is there a middle ground? As a

project leader, how can you influence how people under you gain power?

D. When you go home to your family for the holidays, what is the power structure? How

do people respond to the political actions that take place? Given the advice in this

chapter, what advice might you have for your family? What can you learn from your

family and apply to your workplace?

E. Who are your political allies in your organization? How did you cultivate these

relationships? Is there any way to apply what you've learned from building allies that

can be applied to new people who join your team? Or people you currently might

label as enemies?

F. In this chapter, several tactics are listed for influencing power. What other tactics can

you think of? Rank all the tactics you know of by how much risk they involve and

how much power they have.

G. Watch as many competitive reality TV shows as you can find, like The Apprentice or

Survivor. How do the rules of the game impact the kinds of politics and power people

use?

H. Design your own reality TV show where the rules encourage a more positive kind of

politics.

POWER AND POLITICS 351

§#M

APPENDIX

ffiS

^Ji?;.-:.-

b&g&Ai!

wm

Warn

A guide for discussion groups

N o matter how great your imagination, you can't have a lively discussion with an

inanimate object (if you can, seek psychiatric help). Books have magic powers, but

interactivity isn't one of them. If you want to learn something, it's best to find others

interested in the same topic and learn together. To help you make that happen, I've

provided this handy guide.

Introducing the project management
clinic

The fastest way to have a discussion is to join one already in progress. If you're looking

for a free ride, let me tell you about the PM Clinic. Years ago I set up an email list of

project managers called pmclinic. We avoided most of the annoyances of email discussion

(flame wars, bad advice, too much or too little traffic) by providing a simple structure.

Every Monday I email a situation—a real problem described by a subscriber—and we

discuss that situation for the week. People offer advice, make recommendations, tell good

war stories, and do their best to learn from each other. The list has been running strong

for almost 5 years, has over 1,000 subscribers, and still has a crazy good signal-to-noise

ratio.

To join the PM Clinic, simply head over here:

http://www.scottherkun.com/forums/pmclinic

Anyone can suggest a situation for discussion, and anyone can contribute. If you lurk on

the list for two weeks, you'll get the vibe. If you post thoughtfully, treat the list with

respect, and have a sense of humor, you'll fit in well. (And if you don't, we'll kick you

out faster than you can say "project management.")

How to start your own discussion group
Big group discussions like PM Clinic are convenient, but the best learning happens in

small groups. Dinner-size conversations are the sweet spot because they are small enough

to know everyone personally, but large enough to have diverse opinions and lively

conversation. And best of all, small discussion groups are easy to start.

On the other hand, you may have specific interests, say web development or a particular

management style, and want to focus the group in one direction. In that case, you may

want to start a large discussion group like PM Clinic, but focus on a specific way of

looking at management, even just management within the culture of your particular

company.

354 APPENDIX

In all cases, all you need to get started are three things:

• An hour or more a week

• A book or series of topics to discuss

• Another interested person

Since you're holding thisbookin yourhands, youare already on your way. All you need
is some time and some people.

Finding people

The Webmakes this easy. If you craftan invitation that makes you credible, and send it
to the right place, you'llhavemorepeople than youneed. Byfar the easiest place to find
people interested in a discussion group isat work or school. Ifyou're reading thisbookto
help you in your job, or for a course, lookaround. Start asking peopleyou alreadyknow
to see who's interested.

Other places to look include:

• Your company. Beyondyour team, are there company-wide email lists that you can
use to recruit people? Ifyou havea training organization or HR specialist, they maybe
willing to promote an announcement of your discussion group.

• PM-clinic.Alarge percentage ofpeople in the PM Clinic group have readthisbookor
are interested in readingit. You may have to createa virtual group instead of meeting
in person, but it's an easy place to try.

• Management and software blogs. Aquick websearch will help you find many
people whoalready have communities you canuse. Politely tell themwhatyou'retry
ing to do, and ask if they'll post an announcement for you.

• Management or software development groups. Most majorcities have commu
nity run education groups centered on management, project management, or soft
ware development. PMI, the project management institute, has local chapters in most
cities and can help spread your announcement through email lists. ThePersonal MBA
group (http://personalmba.com/) lists Making Things Happen as one oftheir recom
mended books, and it has a large social network.

Launching the group

How you start your announcement defines both who will sign up and who will stay. It
seems trivial, but your announcement tells people how well you communicate, how
organized youare, andwhether it'sworth theirtime to give it a shot. Write up a short
announcement that is smart, fun, and clear. Here's an example you're free to use:

A GUIDE FOR DISCUSSION GROUPS 355

Want to kick ass at leading and managing teams? We're forming a small
group ofpeopleinterested in becoming better team leaders and managers. We'll
meet weeklyat a localcafe (or virtually over email), discuss a chapter of the book
we're currently reading, exchange war stories and good conversation, and get wise
together. Ifyou're interested, reply witha short email about yourbackground,
proof ofyourgood natureand sly humor, anda suggestion for a book or essay
that'd make for good group discussion.

An email announcement like this willget you enough responses that you can filter out
the scary ones. Get a listtogether, suggest the first meeting timeand place, and make it
happen. Ifyou've chosen to go face to face, pick a cafe or bar you know that won't be too
busy (noisy cafes make conversation tough), is convenient to get to, and has reasonable
hours. In a pinch, most public libraries offer conference rooms for public use. Ifyour
group is formed at work, use a work conference room.

Ifyou choose to go virtual, use any oftheonline group discussion tools, such as Google
Groups (http://groups.google.com/) or Yahoo! Groups (http://groups.yahoo.com/), which can
handle list administration for you. Meetup.com and Ning.com have other useful features
for organizing groups.

The follow-through

The first meeting or discussion will define what happens. At the first meeting, define the
agenda, offer a basic format for howthe meetings will work, and letpeople offer
feedback. Ifeveryone is cool with what you outlined, jump into the discussion. As the
facilitator, always show up to meetings with a list of your own questions for the group
and a storyor two to share ifpeople are slow to volunteertheir own. Smile, introduce
people when they show up, and do everything you can tocreate thefriendly vibe you
want thegroup tohave. Ifyou find someone who is willing to help lead thegroup, make
her a co-organizer.

One trick to a goodfirst meetingis to picka fewpeople to meet with one-on-one before
the first meeting. Buy them coffee, get toknow them, and ask for their support at the
first meeting. This seeding ofa discussion group will make you less nervous at the first
discussion, but alsoestablish a friendly vibe foreveryone since there are at least two
people who already know each other. Of course, an interested friend can play the same
role.

No matter howamazing you do, some people will drop off after the first meeting. It's
natural. They were curious, wanted to see what it was like, but theircuriosity faded after
theyattended once. The people who stay are those you want anyway. As long asyou
have one other person involved, you can ask him to help grow thegroup, orkeep it just
the two of you.

356 APPENDIX

Sample discussion topics
Thesimplest format for a discussion groupis to follow the chapters of a book.Eachweek
people read the chapter and meet to discuss their thoughts, share stories, or do the
exercises for that chapter. When the book is finished, pick another book. Or rotate the
responsibility every week, where each member has to pick a blog post or web article to
read and discuss. As a supplement, here are a few sample discussion topics pulled from

the PM Clinic mentioned above.

Balancing my time with team time

One of my responsibilities as a project manager is to shield the developers on my team

from constant interruption and to structure their work so that they can have chunks of

time to concentrate. My challenge is that I also need an arrangement that allows me to

have dedicated time to concentrate. I find that in trying to keep things moving for my

team and my clients, I often have to find my "concentration time" after hours or on the
weekends. I'd like advice from other project managers on how they balance all the hats

so that they meet the needs/requestscoming in from clients and team memberswhile

also knocking things off their to-do list.

Customers versus team

One of my responsibilities as a PMis to "own"the relationship with an internal customer.
Mychallenge is that at least four other people on my team interact with the customer
team (working with four different people on their team) at leastonce a week. I findit
nearly impossible to stay on top of all the issues the customer is facing to ensure that
we're delighting the customer. Howcan I keep track of all the interaction that happens
with the customer, and ensure that this is communicated effectively within the team

without annoying the crap out ofeveryone involved? Tactical and strategic advice would
be super valuable.

To innovate or not to innovate

Development teams get narrow windows to propose somethingdifferentand innovative
from their organizational or industry norms. Otherwise, it's back to the digital chain
gang, working on a roadmap derived from bugs, customer feature requests, VP whim, or
competitor's existing features. Howdoes a team bestpreparefor and then manage those
brief opportunities to do something different than the norm? How does one balance
investment in innovation against other concerns, such as execution?

A GUIDE FOR DISCUSSION GROUPS 357

My boss is a blowhard

The overall projectleader, my boss, is a blowhard. In our team meetings, he wastes all
kinds oftime talking about things no one cares about (warstories, pet peeves, badjokes,
etc.). He seems to believe that he's entertaining, but few others share this belief. So, our

weekly team meetings are tortured affairs. Hedoesn't follow his own agenda, and he has
little sense of urgency about using up so many people's time. What can I do?

Keeping meetings lean

When I try to run lean meetings on my own subteam, it's hard to get people to come.
Everyone thinks any meetingthat happenswillbe more like my boss' meetings (i.e.,
slow, boring, annoying, and dominated by teamleaderguy). So, I'm struggling to
convince people that my meetings will be different, and then once they come, struggling
to actually make them different, since they behave much like they do in the big team
meeting (stay quiet and hope it ends soon). What can I do?

Death by disaster

Recently my web development team didan exercise in disaster planning. We sat down as
a group, came up with a short list of things that could go wrong, and then tried to

brainstorm how we'd respond. (It was a lot offun and y'all should tryit...butanyway.)
One of the situations we came up with that generated the most discussion was this:

"Three weeks away from your next major deadline, your best programmer gets hit bya
bus andisin a coma. You're on your way back to the office from the hospital, trying to
figure out your next moves. Whatwouldyou do and how wouldyou roll those decisions
out to your team?"

Train wreck in progress

Our mid-size development team (about 15 people, includingtest, etc.) is 5 weeks into a
30-weekproject. Someof us had major concerns duringinitialplanning that were never
resolved (to our satisfaction). Now we find ourselves part of the way overa cliff: the
architecture direction ismisguided, the business plandoesn'tmakecomplete sense, and
the teamis overly scattered and not focused on the same goals (some think they are, but
I certainly don't). But the project already has significant momentum, and management
doesn't see the danger or feel concern about the problem (although the warning signs of
low quality, continuing arguments, andfuzzy requirements are showing). As a project
manager in the middle of a project, how should I work to prevent what I think is a train

wreckin progress? Howcan I protect the development team, and the project, from what I
think will be painful major changes (and throwing away of work) in the next four or five
weeks? How do I save a project that is starting to run off its rails?

358 APPENDIX

The fight against featuritis

We're a version 3.0 software product for business accounting. The product is at a point
where many of the common and important features alreadyexist, and the designis
becoming mature. But what's happening is that the waves of features that the entire
team (business/marketing, as wellas engineering) ispushing for are all minor things,
which sound coolbut that most peopleprobably willnever use, or never use more than
once or twice. I've seen feature creep-and-bloat happen before on other projects, and all
the warning signs are there now. We're becoming a feature farm, not a product
development organization. And everyone seemsgung ho at the prospect. How can I
make sure versions 3.0 and 4.0 don't bury all the good work we did in earlier versions

with tons of pet features, marketing features, and other stuff?How can engineering
continue to help the core business, but not turn the product into a codingand usability

disaster area?

Ultimate fighting championship-style team
meetings

I'm the sole project manager on a teamof five programmers, three testers, and a handful
of other specialists (documentation, localization, etc.). We have decent processes in place
for most of the basics, and generally get alongand work together well. However, the
machete-size thorn in all of our sides is design. When it comes to figuring out what the

features are, and how they work, it's a no holds barred, full-on WWE slamfest.We argue,

fight, getfrustrated, andstruggle over various kinds ofdesign decisions. Sometimes the
arguments are about UI design, sometimes they're abouthighlevel programming choices
(object models/APIs, not implementation), and sometimes they're even about the
requirements themselves. In our organization, it's not uncommon forexecutives and
managertypes to jump in on someof these debates as well (akabattle royale).

So, my question is: what should the role ofa project manager be in leading design
choices? Should PMslean toward tracking/supporting projects, or should they be leading

them?And if they are to lead, howmuchinvolvement should they have in the design of
the software/web site itself?

In-house or off-the-shelf

My team was faced with the choice of buyingexpensive off-the-shelf software or writing
it in-house; we decided on the latter course since it was an important tool (a software

performance analyzer), waswithin the range ofour expertise, and is something we
expect to customize in the future. After five months ofdevelopment (a month beyond
the initial schedule), the product is stillnot working properly and is significantly far away
from completion (another eight weeksby current estimates). The in-house development

A GUIDE FOR DISCUSSION GROUPS 359

costs havealready exceeded the costs of the off-the-shelf product. Whenshouldthe PM
face reality andpersuade management tobuy theproduct? Or, should wethrow good
money after bad and wrestle the in-house product to completion?

Everything is urgent

I have a classic project management nightmare: poorly defined requirements, few specs,
short lead time, noadditional time orresources, and thekicker: it'sa client-based project
that, ifnot delivered on time andto their satisfaction, could cost mycompany a
significant amount of business.Toadd insult to injury:

• Theclient insists that every issue isa showstopper and refuses to prioritize.

• The client is stillpushing to add new functionality.

• The client is also peeved because they don't think ourcompany has been performing
well on this project.

• Internal politics include a development manager who is about to be ousted, a tester
who isabout tobefired (and no replacement), andme, a lone project manager replac
ingsomeone who hasbeenunderperforming but isstaying with the company, and not
inclined to help me in the transition.

I was brought in yesterday toclean up themess (think Harvey Keitel). I have a ship date
ofApril 15. I'minneed ofsome very creative strategies, specifically towind my way
through all the internal and client politics, tosoothe a pissy client, and todeliver quality
software in four weeks!

360 APPENDIX

ANNOTATED BIBLIOGRAPHY

Booksand other media appear in this bibliography for one of two reasons: either they
had the most influence on my ideas, or they have the most value for future reading and

exploration.

Philosophy and strategy
de Botton, Alain, The Consolations ofPhilosophy (Vintage, 2001) ISBN 0679779175

Management philosophy derives much from classical Easternand Westernphilosophy,
and this is a good place to start. I understood and remembered more about Western
philosophy from this littlebook than several years of university philosophy education,
de Botton writes essays that are short, thought provoking, informal, fun, personable,
and memorable. This is the one book I give to people when they say they are

interested in philosophy but don't know where to start.

Russell, Bertrand, The Conquest ofHappiness (Liveright Publishing Corporation, 1930)

ISBN 0871401622

Happy people make forbettermanagers. While I doubt happiness canbe conquered,
this book will help you sort out what makes you happy and why. Russell was a
prominent philosopher in the 20th century, and in spite ofthat, he writes very well.
He was something of a troublemaker and free thinker and it shows in his writing. I
first read this book on a road trip with Chris McGee from Seattle to Banff. I started on
the trip quite unhappy with life in general, and came backreadyto make changes.
This book, Chris, and the trip itself were all influential in my decision to leave
Microsoft and start writing.

Tzu, Sun, The Artof War, Pocket Edition (Shambala, 1991) ISBN 0877735379

This was the first Eastern philosophy book I read that made any sense to me. I
recommend it for its simplicity and very short length. It's written as a book on military
strategy, but has many practical applications. Formany years I carriedthe pocket
edition of this book in my jacket, until the covers wore off and half the pages were
dog-eared (a decade agoI ran into Faisal Jawdat, who would eventuallybe a tech

361

reviewer for this book, at the CMUStudent Center, and we were both amazed to see
the other pull the sameeditionof thisbookout of hispocket). If you find this book
too obscure or abstract, try the moredirect and fun Essential Crazy Wisdom, by Wes
Nisker (Ten Speed Press, 2001) ISBN 1580083463.

Psychology
Zeldin, Theodore, An Intimate History ofHumanity (Vintage, 1998) ISBN 0749396237

Human nature is more vibrant and complex than we give ourselves credit for. This
nontraditional collection of essays based on personal interviews offers insightinto
what makes us who we are. I found thisbookunexpectedly moving. It's not a formal
scientific bookabout psychology: it's moreofa collection of essays by a verywise,
curious, and thoughtful man.

High Noon. 1952. Lionsgate/Fox. 2004. DVD.

Aclassic western film about a sheriff trying to dowhathe thinks isright. Leadership and
integrity inevitably put an individual into situations where they may have to stand
alone. This film explores the psychologyof leaders and followers in difficultsituations. It
illuminates why people are defined asmuchbywhat they're willing to do, as what
they're not. It's alsojust a goodWestern, starring GaryCooper.

Twelve Angry Men. 1957. MGM/UA Video. 2001. DVD.

Anotherimportantfilm about human psychology and groupdynamics in difficult
situations. Henry Fonda plays a jury member who believes something all of the others
does not. He then tries to convince a room full offrustrated people that whatthey
passionately believe cannot be true. Like High Noon, questions about power, influence,
integrity, and belief are centralthemes, and allare relevant to people who lead or
manage others. It's also a classic offilmmaking, directed by Sidney Lumet (authorof
the highly recommended profile ofthe filmmaking process, Making Movies, Vintage,
1996), and starring Henry Fonda.

History

Boorstin, Daniel J., The Creators: AHistory ofHeroes ofthe Imagination (Vintage, 1993)
ISBN 0679743758

Boorstin's series of three history books (The Discoverers, The Creators, The Seekers) are
worth their weight in gold. The Creators follows the Western history of creativework,
from architects, painters, and writers, to engineers. He finds anecdotes and stories that
maketheir pursuits directly relevant and inspirational to anyonetrying to do creative
work today.

362 ANNOTATED BIBLIOGRAPHY

Kidder, Tracy, The Soulofa NewMachine (Back Bay Books, 2000) ISBN 0316491977

Thisbook captures the spiritof the early computer revolution, when the focuswas still
on hardware and electrical engineering. The strength of this book is Kidder's ability to
capture the compulsive and obsessivedrive engineers have to build and create. Despite
the fact that the story centers on the Data General machines and minicomputers they
were building in the late 1970s, I still find this book best captures the personal and
team challenges of working in the tech sector.

Kranz, Gene, Failure Is Not an Option (Berkley Publishing, 2001) ISBN 0425179877

A thrilling account of Kranz's experiences in NASA's flight direction group. It covers

the early Mercury missions, all the way through Apollo 13.There are many lessons
here for project managers about working under deadlines, making commitments to

deliver on what are effectively experiments, and how to lead and manage engineers

under pressure.

Management and politics
Farson, Richard, Management of theAbsurd (Free Press, 1997) ISBN 0684830442

By using the paradoxes and irrationalities of human behavior in organizations, this
book explores what good management behavior is all about. It was a fun read
primarily because he talks about many of the subjects other books are afraid to cover.
Farson claims some problems are comprehendible and solvable only with assistance
from our intuition, and that the exclusive dependence on logic often gets us into

trouble.

Fisher, Roger, et al., Getting to Yes (Penguin Books, 1991) ISBN 0140157352

Best negotiation book per page of reading I've found. It's well written, straightforward,
and practical. Highly recommended.

Klein, Gary, Sources ofPower: How People Make Decisions (MITPress, 1999) ISBN

0262611465

This was a primary source for Chapter 8.1 found explanations and research in it that
helped me understand many of my own beliefs about decision making.

Silbiger, Steven, The Ten-Day MBA (Quill, 1999) ISBN 0688137881

I've read many general business books but this is the one I refer back to most often. It
covers 10 core subjects of many MBAprograms, cutting to the chase on the core ideas
and philosophies in each one. It reads like notes for a good textbook: it's clear that
some formalisms have been avoided and the author instead provides his own less-

formal but easier-to-follow explanations for certain concepts.

ANNOTATED BIBLIOGRAPHY 363

Quick, Thomas, Power Plays: A Guide to Maximizing Performance andSuccess in Business
(F. Watt, 1985) ISBN 0531095827

Picked this up on the used sale rack. Became one of the most useful references for

Chapter 16. The book is vaguely self-helpin that it attempts to give a framework for
organization politics and advice on how to achieve certain goals. It gave the best
summation of tactics that I found, and managed the ethical issues relatively well. Out
of print as of this writing, but should be available through online used bookstores.

Science, engineering, and architecture
Brand, Stewart, How Buildings Learn: What Happens After They're Built (Penguin Books,
1995)ISBN 0140139966

This text accelerated my beliefthat the thingsI knew regardingprojectsand design
from the technology sector had application and relevance generally to the world. This
is one of my favorite books on architecture because of how physically approachable it
is: lots ofpicturesand examples. Brandwritesand thinks like a goodteacher, making
things interesting, and on occasion funny, as he leads your curiosity down clever,
epiphany-laden paths.

Chiles, John, Inviting Disaster: Lessons from the Edge ofTechnology (Harper Business, 2002)
ISBN 0066620821

From airline crashes to oil-rigsinkings, the stories in this book point out the direct
relationship between complexengineeringand their fragile, simple, nonlinear
weaknesses that can lead to disaster. Although it readsmore likea series of long essays
on specific disasters than a book with a central or connected theme, I found all of the
stories of technological disaster interesting and thought provoking.

Cross, Hardy, Engineers andIvory Towers (Ayer, 1952) ISBN083691404X

Found two references to this book on the same day, in fairly unrelated materials, and
felt compelled to dig it up, and found gold. It's an extended rant by an engineer on the
state of the engineering profession circa 1952.He questions many of the popular
attitudes among engineers, from general hubris, to lack of aesthetic or artistic

knowledge, and provides hints at a better, deep viewof what engineering should be
about. I found this book to be what I'd expeaed from Samuel Florman's The Existential
Pleasures ofEngineering (St. Martins, 1976).

Petroski, Henry, To Engineer IsHuman: The Role ofFailure inSuccessful Design (Vintage
Books, 1992) ISBN 0679734163

A classic on the inevitabilityof failure and how learning from it is a key part of
engineering progress. Petroski analyzes several engineering disasters from the Tacoma
Narrows Bridge to the Challenger Space Shuttle, and exposes the theoretical and
tactical failures involved. Well written, short, and in some ways inspirational.

36* ANNOTATED BIBLIOGRAPHY

Software process and methodology
Beck, Kent, Extreme Programming Explained (Addison-Wesley, 1999) ISBN0201616416

This short book clarifies the intention and philosophy of XPand gives some of the basics
for how to make it happen. It's compelling in spirit and passion, but often reads more
like a spiritual than a playbook. It explains iterations, velocity, stories, and the other key
processes ofXP, while simultaneously expressing theirbenefits. I examined manyofthe
other extreme and agileprogrammingbooks, and found they generally overlapped
significantly with the coverage here. Planning Extreme Programming (also by Beck) was
the only other XPtext I found useful enough to generate notes from. It's more
proceduralthan "embrace change" (although the first half does overlapheavilywith it).

Brooks, Fred, The Mythical Man-Month (Addison-Wesley, 1995) ISBN 0201835959

This grand classic, first published more than 20 years ago, still hits home on many
major points. Brooks writes well, uses strongmetaphors, and leaves you feeling like
you just conversed with a man much wiserand friendlier than you are. It's perhaps
the most well-known and widely respected book on managing software development

projects.

Bullock, James, et al., Roundtable on Project Management: A SHAPE Forum Dialog (Dorset

House, 2001) ISBN 093263348X

A collection of summarized conversations from Weinberg's SHAPE discussion group. I

loved this book. It captures the spirit and energy of being in a conversation with a
bunch of very smart and experienced peoplewho are generous about sharing what
they know. Theycovermany of the topics in software projectmanagement from
project inception, schedules, conflict, and managementpolitics. The book is short. It's
based on conversations, so it's more pith and nugget than theory and playbook.

Cockburn, Alistair, Agile Software Development (Addison-Wesley, 2001) ISBN0201699699

The second half of this book has excellent coverage of software development

methodology, and thoughts for would-bemethodology creators.Thisbook is heavily
referenced (sometimes frighteningly so) and shifts back and forth between a practical
guide and a high-level, theory-based textbook. Ifyoulike a mixture ofboth, thisbook
is for you.

DeMarco, Tom and Timothy Lister, Peopleware (Dorset House, 1999) ISBN 0932633439

The classic management book on programmers as people. It humanizes the software
development process by capturing how important working and social environment are
in making people productive. The focus on teams and performance over hierarchy and
rules makes this book a godsend for managers new to tech-sector work environments.
Filled with tons of suggestions and recommendations, this is one of the great ones.

ANNOTATED BIBLIOGRAPHY 365

Friedlein, Ashley, Web Project Management (Morgan Kaufmarm, 2001) ISBN 1558606785
I spent much time looking for good books specifically on managing web development. I
didn't find many. This was theonly one thatI was able togenerate good notes from.
Although it's written mostly from the perspective ofweb development firms and
contract-based work, this doesn't get in theway oftheadvice. Friedlein offers a simple
methodology and plentyofstories and case studies, and captures the interaction of roles
(design, test, programming, etc.) needed tomake high-speed web production possible.

Humphrey, Watts S., Managing the Software Process (Addison-Wesley Professional, 1989)
ISBN 0201180952

Humphrey is one of the greatpioneers in software engineering work. This was the
most accessible and applicable book of his that I found. It covers the SEI CMM

(Capacity Maturity Model, http://www.sei.cmu.edu/cmm/cmms/cmms.html) in detail. It
provides generaldevelopment managementadvice for many of the core situations. Be
warned that the writing, though generally good, can be dry at times: it is a textbook
(and pricedaccordingly). The examples and philosophy tend to make more sense for
larger organizations.

McCarthy, Jim, Dynamics ofSoftware Development (Microsoft Press, 1995)
ISBN 1556158238

One ofthe first books I read asa program manager at Microsoft. McCarthy, former
development manager for Visual C++ atMicrosoft, breaks down the craft ofshipping
software into bite-size nuggets, roughly organized bychronology in thedevelopment
process. This book isone ofthe first recommendations I make to new program
managers at Microsoft: it captures the old-school Microsoft PM attitude, the good and
the bad, better than any book I know of.

McConnell, Steve, Rapid Development (Microsoft Press, 1996) ISBN 1556159005
This book sat untouched on my shelffor yearssolely because of its enormous size:
throwing thisat a small programmer might kill him. However, Chapter 3 on common
software failures is worth the price of admission alone. The book is a sort of

encyclopedia ofknowledge on modern software development: verybroad and concise.
What makes this book a winner ishoweffective McConnell isin offering advice, and
picking useful aspects of situations or problems to cover.

Project Management Institute (PMI), www.pmi.org

This is the most well-known organization for people interested in project
management. They offer courses and events at local chapters in manycities, publish
newsletters andmagazines, andarean excellent general resource for learning more
about formalized project management.

366 ANNOTATED BIBLIOGRAPHY

Weinberg, Gerald, Quality Software Management, Vols. 1-4 (DorsetHouse, 2001)

ISBN 0932633242

This is Weinberg's four-part opus on managing software development. Volumes 1 and
2 provide all kinds of great insights into understanding what's reallygoingon with a
project, and how to manage and direct it predictably.With a mixture of science,
philosophy, observation, and humor, these textbooks give lots of mileage and
unexpected insights. Weinberggoesdeep in this book: it inspired many contemplative
pauses while reading.

Whitehead, Richard, Leading a Software Development Team (Addison-Wesley, 2001)

ISBN 0201675269

The most practical and straightforward book I've found on leading small development
teams. I picked this up on a lark during early research since I'd never heard mention
of the book before, and was continually surprised by the quality of what I'd read. Very
pragmatic, wise, simple, and useful. This was one of the unexpected gems of all my
research.

ANNOTATED BIBLIOGRAPHY 367

ACKNOWLE DG M ENTS

For this revised edition

Thanks to the O'Reilly crew of Mary Treseler, Marlowe Shaeffer, Sara Peyton, and Rob

Romano. Kudos to Faisal Jawdat, Neil Enns, David Gobert, Linda Lee, Ken Norton, Linda

Whitesell, and Steven Levy for long hours reviewing the first edition and suggesting

changes. And thanks to everyone who bought the first edition, helped to spread the

word, and made this first update possible.

From the previous edition
Big thanks to Mike Hendrickson, my editor at O'Reilly, for giving me the green light and

plenty of rope. Superior grade thanks to Faisal Jawdat, Ben Lieberman, and Andrew

Stellman, the brave and generous tech reviewers of the early drafts.

The making of this book involved many people: thanks to Marlowe Shaeffer (production

editor) for managing the project that is this book, Marcia Friedman (interior designer),

Rob Romano (illustrator), Jeremy Mende (cover designer), Audrey Doyle (proofreader),

Ellen Troutman-Zaig (indexer), and Glenn Bisignani (product marketing manager).

The following people volunteered their time to be interviewed, or to give feedback on

early drafts of chapters. Muchos gracias to Michelle Breman, Pierro Sierra, Eric Brechner,

Richard Stoakley, Mark Stutzman, Neil Enns, Jason Pace, Aly Valli, Joe Belfiore, Bill

Staples, Laura John, Hillel Cooperman, Stacia Scott, Gwynne Stoddart, Terri Bronson,

Barbara Wilson, Terrel Lefferts, Mike Glass, Chromatic, and Richard Grudman. Special

thanks to Ken Dye, my first manager at Microsoft, and Joe Belfiore for giving me my

break into program management and shaping my early ideas on what good managers and

leaders are supposed to do.

Additional, individually wrapped thanks to my wife, Jill "bear" Stutzman; Richard "big
daddy" Grudman; the Reservoir Dogs (Chris "our hero" McGee, Mike "all the moves"

Viola, David "pretty boy" Sandberg, Joe "gourmet" Mirza, Phil "five-card stud" Simon);
Vanessa "NYC"Longacre; Bob "making the Web work" Baxley; and the fine folks at

gnostron, unhinged, and the pm-clinic. General thanks to the very idea of the universe;

the word papaya; big forests with big trees; people who remain silly, curious, and fun

beyond their years; the letter Q and the number 42. A thank you value pack to the King
County library system and all librarians everywhere. The Interlibrary loan program is a
godsend. Thanks guys.

The following music kept me sane during long hours at the keyboard: White Stripes,

Palomar, Aimee Mann, The Clash, Johnny Cash, Social Distortion, Rollins Band, Sonny
Rollins, Charles Mingus, Theloneous Monk, Breeders: Last Splash, AudioSlave, MC5,

ChrisMcGee'sgreatest mixes, Jack Johnson, Patty Griffin, Akiva, Flogging Molly, Sinatra,

Beatles, Bruce Springsteen, PJ Harvey, Radiohead, Ramones, Weezer, Tom Waits, All Girl

Summer Fun Band, Best of Belly, Magnetic Fields, Beth Orton, Elliot Smith, and Nick

Cave and the Bad Seeds.

No project managers were harmed in the making of this book. But sadly, Butch, our dog,
passed away during final production. Butch, RIP 1991-2004. He was at my feet while
many of the ideas and pageshere came to be. Gooddog, Butch. We'll miss you.

370 ACKNOWLEDGMENTS

PHOTO CREDITS

Preface, Frank Lee, www.flee.com, Duomo, Florence, Italy

Chapter 1, Frank Lee, www.flee.com, Duomo, Florence, Italy

Part One, Scott Berkun, Marymoor Park, Redmond, WA

Chapter 2, Scott Berkun, Interstate 84, Idaho

Chapter 3, Scott Berkun, 1-5 interchange, Seattle, WA

Chapter 4, Scott Berkun, Farrel McWhirter Park, Redmond, WA

Chapter 5, Scott Berkun, University of Washington

Chapter 6, Scott Berkun, Capilano, Vancouver, Canada

Part Two, Jill Stutzman, www.uiweb.com/jillart, Redmond, WA

Chapter 7, David F. Gallagher, www.lightningfleld.com, NYC

Chapter 8, Scott Berkun, Bakery in Queens, NYC

Chapter 9, Scott Berkun, Scott & Jill

Chapter 10, Scott Berkun, Sea-Tac Airport

Chapter 11, Scott Berkun, Portland (near Powells)

Part Three, Scott Berkun, Used book store, Unknown

Chapter 12, Frank Lee, www.flee.com, Amsterdam

Chapter 13, Scott Berkun, Self-portrait, Yellowstone National Park

Chapter 14, Scott Berkun, Broomball #1, Brainerd, ND

Chapter 15, Scott Berkun, Broomball #2, Brainerd, ND

Chapter 16, Scott Berkun, Eiffel Tower, Paris

Appendix, Scott Berkun, Boat to Elephanta Island, Mumbai, India

371

INDEX

Abt, Clark, 156

accountability, lack of, 338
accuracy versus precision, 31,168
acknowledgment for work done, 149
action, conversion of communicated

messages to, 181
ad hominem attacks, 182

Adams, Scott, 270

adjustments
corrective actions with unforeseen

consequences, 281
safe action during mid-game,

286-288

strategic questions for staying
ahead, 284

tactical questions for staying
ahead, 284

adversities, overcoming, 214-237
conflict resolution and

negotiation, 224-226
criteria for defining difficult

situations, 217

damage control, 222
emotions, 228-235

feelings about feelings, 232
hero complex, 233
pressure, 229-232

exercises, 236

good training for PMs, 220
handling difficult situations, 214-216
list of difficult situations, 218-220

roles and clear authority, 226-228
summary of key points, 236
taking responsibility, 221
trust and, 251

advice

following, 187
seeking out expertise or useful

advice, 276

affinity diagrams, 122-124
how they work (example), 123

agile methods, 28, 29
Agile Software Development, 365
agreement

finding points of agreement, 224
in communications, 180

alternatives

best alternative to negotiated
agreement, 225

exploring for problem situations, 216
ambiguity, tolerance of, 11
anger in difficult situations, 214
annoying others, avoiding, 194-212

creating and rolling out good
process, 199

effects of good process, 195-197
email, 200-205

example of bad email, 204
example of good email, 205
writing good email, 201-203

exercises, 212

formula for good process, 198
meetings, 205-211

art of facilitation, 206

evil of recurring meetings, 209
pointers on, 210
pointers on facilitation, 207
types of meetings, 208

protecting teams from bad
processes, 199

summary of causes of
annoyance, 194

summary of key ideas, 211

373

antipatterns catalog, 221
anti-project projects, 28
API references, 143

Apollo 13 (film), 98
Apollo 13 mission, 270, 363
architecture, references on, 364
arguments

use in negotiation, 226
using style that fits the

environment, 273

Art of War, 361
artificial pressure, 230
asking others for their best work, 188
assumptions

causes of annoyance to others, 194
causing communication failures, 181
challenging in order to seek the

truth, 270

about email, 203

leadership roles and, 184
people work hard and try to do their

best work, 186

attendees at meetings, getting the right
people, 210

attention

not paying attention as
communication problem, 182

paying attention to what works, 273
attitudes

balancing in project management, 10
best work attitude, 186
forcing change in, 25

Austin, Nancy, 179
authority

centralization in end-game, 320
decision making, 159, 228
defining in planning process, 61
delegation of, 250
distribution across a team, 270
earned, 249

knowing who has authority, 274
organizational structure, impact on

planning, 46
requirements and design, 92
(see also power)

autocratic behavior, 248

characteristic of project managers, 11
using when necessary, 249

37H INDEX

B

Balancing Agility and Discipline: A Guide for
the Perplexed, 26

Bargainingfor Advantage, 224
BATNA (Best Alternative To Negotiated

Agreement), 225
Beck, Kent, 365

Beckett, Samuel, 103

begging, 276
beginner's mind (shoshin), 4
behaviors

evaluating for different
environments, 274

forcing change in, 25
(see also emotional/psychological

issues)
being behind, 285
belief in a project, 12

lack of faith causing difficult
situations, 219

Best Alternative To Negotiated Agreement
(BATNA), 225

Beyond Chaos: The Expert Edge in Managing
SoftwareDevelopment, 221

biological thinking, 277
Black, Rex, 304

blame

causing communication failures, 183
decision making and, 171
failure complex, 235
negative effects of, 333
reprimands, 255

Blanchard, Todd, 199

blowhard boss, dealing with, 358
Blumenthal, Jabe, 9

Bodhidharma, 169

Boehm, Barry, 26, 32
Boeing Company, lessons from failures, 5
Boorstin, Daniel J., 70, 362

bottom-up schedules, 33
Botton, Alain de, 224, 361

Bourdain, Anthony, 6
Bradshaw, John, 179,233
brainstorming

customer-centric design with
technology considerations, 108

ThinkPak playing cards, 107
(see also creativity; ideas)

Brand, Stewart, 221, 364

Brand's Pace Law, 221

breakdown structure (see work
breakdown structure)

Brenners, Richard, 265

bribes, 276

briefs, mid-game, 289
Brook's Law, 218

Brooks, Fred, 7, 14, 44, 365

Brueghel, Pieter (the Elder), 176
budgets

authority over, 47
money as exit criterion, 305
ordered lists, 262

bugs
coding pipeline becoming bug fix

pipeline, 292
exit criteria for, 305

ordered lists of priorities, 262
review by war team, 321
reviews in closing stage of end

game, 323
triage, 318-320

Bullock, James, 335, 365

bullshit, detecting, 268
bureaucracy, 194,200
burnout, 302

Buscaglia, Leo F., 233
business perspective, 49

conflicts with engineering, 8
criticism from technology

perspective, 51
debates on design of IE web-

search, 55

integrating with technology
requirements, 66

marketing, 50
on planning, 48

Butter, Andrea, 82

calmness

in adverse situations, 214

staying calm when you're
behind, 286

Camus, Albert, 257

capacity maturity model (CMM), 280
Carnegie, Dale, 349

chain of command, 228

challenges
eliciting the best work from

others, 187

flushing out early with schedules, 25
change control, 298
change request (CR), 298
changes (deltas), 293
CHAOS Report (Standish Group), 4
cheap shots, 183
checklists, confusing with goals, 13
checkpoints

defining for design phases, 120
for add/cut discussions, 40

plans to overcome difficult
situations, 216

chess, 280

conservative or aggressive
strategy, 296

Chiles, John, 364

Chop Wood, Carry Water, 257
chunks of work

breaking design into, 34
schedules as breakdown tools, 25

Cialdini, Robert, 349

clarity
lacking in communications, 182
making things happen on

projects, 263
Clausewitz, Karl von, 280

client-based project (example), 360
CMM (capacity maturity model), 280
Cockburn, Alistair, 64, 365

coding pipeline, 289-293
adjusting work to prepare for

changes, 296
aggressive and conservative

pipelining, 291
becoming the bug fix pipeline, 292
controlling mid-course changes, 294
questions to resolve problems, 290
tracking mid-game progress, 292

coercion, 334

Cohen. William A., 214

collaboration, trust and, 110

commitments

breaking or changing, 288
PM's ability to make and keep, 243

INDEX 375

communication, 176-191

acknowledging the work of
others, 148

basic model or framework, 179-181

being persuasive, 226
benefits to project management, 15
best work attitude, 186

common reasons for failure, 181-183

defense against data manipulation or
misinterpretation, 168

discussing critical decisions as a
group, 164

email, advantages and disadvantages
of, 200

enhancement by relationships, 178
evaluating styles in

environments, 273

exercises, 190

importance of writing things
down, 71

management through
conversation, 177

methods of getting the best work
from others, 187

miscommunication causing misuse of
power, 337

motivation to help others do their
best, 189

relationships, 184-185
role understanding and, 228
simplicity in writing vision

documents, 78

summary of key ideas, 190
switching modes, 275

comparative evaluation, 160
pros and cons lists, 161

comparisons, using numbers, 166
competence of others, respecting, 194
completion of a project, 325
complexity, acknowledging, 11
Complications: A Surgeon'sNoteson an

ImperfectScience, 7
compound probability, 38
confidence intervals for estimates, 36

conflict

avoiding by denying problems
exist, 268

causing difficult situations, 219
conflict resolution, 224-226

basic steps in negotiation, 224

376 INDEX

Conquest of Happiness, 361
Consolations of Philosophy, 361
Constantine, Larry, 221
Constitution of the United States, 85

constraints

political and power constraints on
leaders, 332

problem solving and, 97
control, loss of, 281

controlling projects, 316-322
review meetings, 317
triage, 318-320
war team, 320-322

conversations

directing at meetings, 207
ending at meetings, 207
influencing person with relevant

power, 345
Cooper, Alan, 126
courage, 12

in decision making, 169-171
self-reliance, 257

Covey, Stephen, 184
CR (change request), 298
creative questions, 101
creativity

books on creative thinking, 107
environment and, 107

knowing which constraints to use or
ignore, 98

momentum of creative work, 119

persistence as contributor to, 107
references on creative work, 362

revision and refinement of ideas, 103

stereotypes and misperceptions
about, 95

Steve Jobs on creative design, 104
Creators: A Historyof Heroesof the

Imagination, 70, 362
crisis management (see adversities,

overcoming)
critical paths, 269,291
criticism, constructive, 95

Crosby, Philip, 50
Cross, Hardy, 364
culture

organizational culture, 274
questioning, view of, 268
team, 196

customer demands, managing future
volatility of, 30

customer perspective, 52
beginning the design process,

108-109

experts on, 53
important questions from, 53
in problem statements, 63

customer suggestions, ordered lists of, 262
customers

customer research and its abuses,

61-63

team versus, 357

daily builds, 223
damage control, 222
DCRs (design change requests), 298

review by war team, 321
De Bono, Edward, 107

de Botton, Alain (see Botton, Alain de)
deadlines, 302

big, as several small deadlines, 304
exit criteria quality and, 304
extraordinary efforts to meet, 302

"Death by a thousand cuts", 158
deception, 268
decision making, 156-174

causes of failures in, 156

clear line of authority, 228
comparative evaluation, pros and

cons list, 161

courage to decide, 169-171
decisions with no winning

choices, 169

good decisions with bad
results, 170

critical path, 269
discussion and evaluation, 164

eliminative logic, 165
emotional and psychological issues

in, 161

exercises, 174

finding and weighing options, 160
formal training in, 157
information and

data and decisions, 167

misinterpretation of data, 167
numerical data to support

claims, 166

knowing relevant source of
power, 341

lessons learned from a crisis, 216

Occam's Razor, 165

paying attention to the outcomes of
decisions, 171

precision versus accuracy, 168
reflection, using as a tool, 166
research as ammunition, 168

reviewing decisions, 171-173
sizing up a decision, 157-159
summary of key ideas, 173
training for making difficult

decisions, 171

unclear process, causing misuse of
power, 337

decision tree analysis, 156
Declaration of Independence, 79
defects, 313

delegation
of authority, 250
finding right balance of power for

projects, 56
project managers and, 11

deliverables

planning process, 47, 59
planning process, timeline for, 61

deltas, 293

DeMarco, Tom, 27, 102, 365

Deming, W. Edwards, 50
denial, failure complex and, 235
derision, 183

design, 90-111
authority for, 46
bad ideas, 95

bad ideas leading to good ideas,
102-104

beginning with customer
experience, 108-109

benefits of good design to
scheduling, 40

changes causing chain reactions, 117
changes resulting from problems, 218
checkpoints for phases, 120
completion of, 304
exit criteria, 305

feedback loop between design and
requirements, 94

frequency of review and
adjustments, 47

generating ideas
exercises, 111

summary of key points, 110

INDEX 377

design (continued)
good designs from many good

ideas, 103

good questions leading to good
ideas, 99-102

imagining the future and visualizing
ideas, 85

iteration, 118

meeting requirements, 45
more approaches to idea

generation, 107
open-issues list, 129
ordered lists of features and work

items, 262

perspective and improvisation,
104-107

PM role in leading design
choices, 359

product designers, 53
projects having high production

costs, 29

prototypes, 125-128

questions for prototyping
iterations, 128

role of high-quality
requirements, 91-93

scheduling, 27
as series of conversations, 109

specifying versus designing, 140
technical decisions versus, 46

design change requests (DCRs), 298
review by war team, 321

design exploration, 93-95
fear of, 95

designers, 85
responsibility for feature

specifications, 140
Devaux, Stephen, 269,291
development cycles, short, 293
dictatorial behavior

causing communication
problems, 182

getting work out of people, 187
persuasion versus, 249

difficult situations (see adversities,
overcoming)

direction changes, 219,293-295
change control, 298
preparing for potential changes,

295-298

378 INDEX

disagreements
on best use of power, 336
causing difficult situations, 219
finding the point of agreement, 223
healthy, 224
about priorities, 261
using authority to end, 254
(see also conflict resolution)

disaster planning, 358
Discoverers, 70

discussion groups, 354-360
for this book, xiii

examples of discussion topics, 357-
360

PM Clinic, 354

starting your own, 354-356
finding people, 355
follow-through, 356
launching the group, 355

discussions

documenting for meetings, 208
highly interactive, in meetings, 208
negotiation as form of, 226
privately speaking with a person, 275
reporting or moderate discussion at

meetings, 208
dislike, motivating misuse of power, 338
dissent in decision making, 163
divide and conquer methodology, 29-31
do nothing option, 163
Don't Make Me Think, 109

drill sergeant mentality, 231
Dynamics of SoftwareDevelopment, 322, 366

earned power, 247, 333
easy versus simple, 4
ECO (engineering change order), 298
ECR (engineering change request), 298
Edison, Thomas, 98, 103

ego

causing misuse of power, 338
factors in project management, 11
making senior managers think it's

their idea, 348

resistance to sharing expertise from
different perspectives, 55

Einstein, Albert, 103

Eisenhower, Dwight D., 293

eliminative logic, 165
email, 200-205

as cause of annoyance, 200
communication and, 180

example of bad email, 204
example of good email, 205
writing good email, 201-203

emergency rooms, 7, 9
Emerson, Ralph Waldo, 257
emotional/psychological issues, 228-235

challenge of prioritization, 263
emotions in decision making, 161
emotions in difficult situations, 214

failure complex, 235
feelings about feelings, 232
hero complex, 233
pressure, 229-232

natural and artificial

pressure, 230
psychological benefits of buying

coffee and treats for

others, 277

references on, 362

employee bonuses, ordered lists, 262
end-game strategy, 280, 302-327

big deadlines as several small
deadlines, 303

celebrating the completed
project, 325

elements of control, 316-322

war team, 320-322

ending the end-game, 322-325
bug reviews, 323
project postmortem, 324
release candidate, 323

rollout and operations, 324
exercises, 326

summary of key points, 325
ToEngineer Is Human, 5, 364
engineering

breakthroughs resulting from
failure, 5

conflicts with business roles, 8

coordination with marketing and
business at Microsoft, 9

perspective on planning, 48
references on, 364

engineering change order (ECO), 298
engineering change request (ECR), 298
Engineers and Ivory Towers, 364

environments, social, political, and
organizational, 273

Essential Crazy Wisdom, 362
estimation

design change requests (DCRs)
and, 299

good estimates from good design, 35
other ways to ensure good

estimates, 36

wide applicability of process, 34
exit criteria, 303

defining, 304-306
examples, 306

expertise as source of power, 334
ExploringRequirements: QualityBefore

Design, 63
Extreme Programming (XP), 26, 29

agile and traditional methods, 29
iterations, 29

velocity, 36
Extreme ProgrammingExplained, 365

facilitation

defined, 206

pointers on, 207
failure complex, 235
Failure Is Not an Option, 270,363
failures

learning from, 4
(see also adversities, overcoming)

faith, lack of, 219

Farson, Richard, 330, 363
Fault Feedback Ratio (FFR), 316
favors, calling in, 276
fear, 12

making difficult situations worse, 214
feature specifications, 139

error of combining with technical
specifications, 141

feature statements (scenarios), 64
feature-driven development, 26
features

completion of, 304
fight against featuritis, 359
forcing function to prevent random

features, 262

ordered lists, 262

feedback on PM's behavior from team

members, 253

INDEX 379

Fields, Rick, 257

Fight Club (film), 182
Fisher, Roger, 224, 363
flanking your objective, 346
flying ahead of the plane, 281-286

sanity checks, 283
flying behind the plane, 282

lots of work to do versus being
behind, 285

focus, clarifying priorities, 264
focusing questions, 100
fog of war, 280
for your information (FYI) emails, 203
forces (unknown), corrective actions

on, 281

forcing function, 25
48 Laws of Power, 349
Franklin, Benjamin, 162
Friedlein, Ashley, 289, 366
frustration, actions based on, 214

functional power, 246
FYIs (for your information) emails, 203

gadgets and laptops, use in meetings, 211
Gause, Donald, 63

Gawande, Atul, 7

Getting to Yes, 224, 363
Gilliam, Terry, 110
Glass, Robert, 267

goals
aligning with powerful person to

solve political problems, 342
analyzing for accuracy, 284
confusing with processes, 13
confusion about, 261

definition in vision documents, 48,
72,74

different organizations in a project
together, 226

evaluating contribution of work items
to, 284

example of good project goals, 82
focusing on through priorities, 264
individual goals, 73
individuals misusing power, 335
levels of, 73

mismatch in meetings, 209
moving, making adjustments to align

with, 294

380 INDEX

ordered lists of project goals, 262
pressure to meet goals, 230
preventing misuse of power, 339
reminding team members of project

goals, 188
SMART acronym for goal writing, 75
support for project goals, 83
team goals, 72
understanding of, importance in

estimates, 36

weak or toothless, causing misuse of
power, 338

well-written, 74

golden rule, 252
Google Groups, 356
granted power, 247, 333

using when necessary, 249
"green light", 246
Greene, Robert, 349

group power, illusion of, 343
GUIBloopers, 109
guilt-tripping, 231

H

habits, team, 196

Hawken, Paul, 214

Hemingway, Ernest, 103
hero complex, 233

failure complex and, 235
motivating beliefs, 234

hiding, 275
High Noon (film), 362
history of project management

key lessons from, 3
learning from failure, 4
relating history to the present, 5
similarities and differences among

projects, 2
history, references on, 362
Holmes, Sherlock, 165

honesty in viewing a project's status, 267
hospital emergency rooms, 7, 9
hosting meetings, 207
How Buildings Learn, 364
How to Lie with Statistics, 167

How to WinFriendsand InfluencePeople, 349
Huff, Darrell, 167

Hugo, Victor, 202
Humphrey, Watts S., 27, 243, 288, 366
hunting people down, 275

I

ideas

managing, 114-131
changes causing chain

reactions, 117

consolidating ideas, 121-124
creative momentum, 119

decisively and predictably, 115
design phase checkpoints, 120
design prototypes, 125-128
exercises, 131

ideas getting out of control, 114
refining and prioritizing, 124
summary of key points, 130

origins of, 90-111
bad ideas, 95

bad ideas leading to good
ideas, 102-104

customer-centric design, 108-109
design exploration, 93-95
design process as

conversations, 109

evaluating ideas, 96
exercises, 111

good questions leading to good
ideas, 99-102

more approaches to generating
ideas, 107

perspective and
improvisation, 104-107

quality requirements, 91-93
stereotypes and

misperceptions, 95
summary of key points, 110
thinking in and out of boxes, 97

impatience, 12
implementation, scheduling, 27
improvisation, 104-107,110

rules for idea generation, 106
incompetence, dealing with, 227
inconsistent behavior, trust and, 244

individual goals, 73
industrial designers, 85
inertia (project), corrective actions

and, 281

Influence, 349
influence

indirect use of, 347

multistage use of, 346
as source of power, 335

using to flank your objective, 346
(see also politics; power)

information

precision versus accuracy, 168
research as ammunition, 168

transmitted via email, 180

InmatesAre Running the Asylum, 126
innovation, decisions on, 357

inspiration
eliciting the best work from

others, 187

provided by vision documents, 75
interaction designers, 85
interests, mutual, 225

misuse of power and, 335
interim dates, 303

Internet Explorer 4.0, 13
decision making, explorer bar

component, 169
example of ideas out of control, 114
web search features, 55

Intimate Historyof Humanity, 362
intranet web sites

Hydra example, levels of goals, 73
problem statements (example), 64

Inviting Disaster, 364
involvement, appropriate level for

managers, 14
iterations (design), 48, 118

questions for prototype
iterations, 128

J
Jefferson, Thomas, 79

Jiro, Kawakita, 122

Jobs, Steve, 104

Johnson, Jeff, 109

K

Kaiser, Henry, 302
Kennedy, John F., 351
Kidder, Tracy, 363
Kitchen Confidential, 6
kitchens, 6

KJ (Kawakita Jiro) diagrams, 122
Klein, Gary, 157, 160,363
Kluger, Jeffrey, 271
Kranz, Gene, 270, 363

Krug, Steve, 109

INDEX 381

Laner, Dan (Major-General), 293
laptops, use in meetings, 211
leadership, 8, 242-258

aligning individual and team
goals, 335

management and, 13
political and power constraints, 332
power and politics, 330
project postmortem, 324
trust

as insurance against
adversity, 251

building, 242-244
exercises, 258

feedback from team

members, 253

golden rule for managers, 252
losing, 244
making trust explicit, 245
managing mistakes, 254
power, 246-249
reprimands, 255
summary of key points, 257
trusting in yourself, 256
trusting others, 249

warning signs in obsession with
process, 27

weekly or monthly status
discussions, 284

Leadinga Software Development Team, 367
Lederberg, Joshua, 118
lessons learned, generating list for a

crisis, 216

lies or misrepresentations, 267
Lincoln, Abraham, 45

listening
at meetings, 207
not listening as cause of

communication failures, 182
Lister, Timothy, 102, 365
Lost Moon, 271

Lovell, Jim, 271

M

M&M (morbidity and mortality)
sessions, 172

making things happen, 260-278
exercises, 277

knowing the critical path, 269
priorities, 260-265

382 INDEX

realistic views of project status, 267
relentless pursuit of goals, 270-272
savvy project management, 272-277
saying no, 265-267
summary of key points, 277

management

blowhard boss, 358

philosophy and strategy, references
on, 361

references on, 363

management by walking around
(MBWA), 179

Management of the Absurd, 363
management traps, 218
managers, appropriate level of

involvement, 14

Managing the Software Process, 27, 243, 366
Managing the TestProcess, 304
managing up, 341
marketing

engineering quality and, 51
product, price, placement, and

promotion, 50
marketing requirements document

(MRD), 47
matrix organization, 9
McCarthy, Jim, 322, 366
McConnell, Steve, 221, 366

measurements, 310-316

activity charts, 313
bug/defect management, 312
daily builds, 311
evaluating trends, 314
processes as aid to, 197
useful bug measurements, 316
of work, 186

meetings, 205-211
art of facilitation, 206

damage control, 223
getting the right people, 210
keeping lean, 358
non-annoying, 209
pointers on facilitation, 207
preparation for, 276
pros and cons of, 205
recurring, evil of, 209
resolving problem situations, 215
solving political problems, 348
specification reviews, 149
tactics for successful meetings, 210
types of, 208
war team, 321

Memento (film), 70
Mendelson, Edward, 108

meta-problems, 220
methodologies, 26,281

obsession with, 27

references on, 365

scheduling, 27
Michalko, Michael, 107

micromanagers, 14
Microsoft

browser wars with Netscape, 115
program and project management, 9

middle-game strategy, 280-300
coding pipeline, 289-293

aggressive and conservative
pipelining, 291

tracking progress, 292
direction changes, 293-299

managing changes, 298
preparing for potential

changes, 295-298
exercises, 300

saving a train wreck in progress, 358
staying ahead of events, 281-286

sanity checks, 283
summary of key points, 299
taking safe action, 286-288

milestones, 29

completion of, 304
crossover points, 303
direction changes and, 294
evaluating in relation to changing

goals, 294
exit criteria, 139

high-level changes and, 295
matching length to project

volatility, 39
misinterpretation of data, 167
mistakes, managing, 254
misunderstanding, causing misuse of

power, 337
Mizrahi, Terry, 242
morbidity and mortality (M&M)

sessions, 172

motivation

causes for misuse of power, 338
conversation versus demands as

motivator, 178

getting people's best work, 187
to help others do their best, 189

hero behavior, 234

personal motivation misaligned with
project, 335

MRD (marketing requirements
document), 47

Murphy's Law, 39
mutiny, threats of, 220
mutual interest, 225

Myth of Sisyphus, 257
MythicalMan-Month, 7, 14, 365

N

NASA, 363

natural pressure, 230
negative pressure, 231
negotiation, 224-226
Nietzsche, Freidrich, 247

Nisker, Wes, 362

no (see saying no)
numbers, trust in, 166

objectives, 72
obsession with methodologies, 27
Occam's Razor, 165

online group discussion tools, 356
open issues, 129

managing during specification
writing, 146-148

summarizing after specification
review, 151

open mind, 4
operations and rollout, 324
optimism in vision documents, 39
opt-in meetings, 209
oral skills, 11

ordered lists, 260, 262

clarifying agreed-upon priorities, 261
other important subjects of, 262
priority 1, 263
project goals, features, and work

items, 262

organizational culture, evaluating, 274
organizational environments, 273
organizational structure

autocratic behavior, 248

bad processes ordained by higher
management, 199

balance of power, 56

INDEX 383

organizational structure (continued)
impact on planning, 46
layers of politics and power you can't

see, 344

politics and, 330
Out of the Crisis, 50
outcome of meetings, 211
over-involvement by managers, 14
oversights, 218

flushing out early with schedules, 25

"Painless Bug Tracking", 313
Palm Pilot project goals, 82
panic, 281
paradoxes of project managers, 10
Passion for Excellence, A, 179
Pasteur, Louis, 280

patience, 12
Peopleware, 27, 102, 365
perfection, pursuit of, 11
performance

measurement for project
components, 305

relationship to pressure, 231
personal attacks, 182

versus inquiries into the truth, 268
Personal MBA discussion group, 355
personality conflicts, 225
personality, team, 196
personnel issues, 219
perspectives

business perspective, 49
creativity and design process,

104-107

customer perspective, 52
in decision making, 163
forcing change in, 25
interdisciplinary view, 54
meetings and discussions, 61
persons with power, 342
planning process, involvement in, 59
power distribution across, 56
technology perspective, 51
value in the design process, 110

persuasion
dictatory behavior versus, 249
influence and power, 335
use in negotiation, 226

PERT (Program Evaluation and Review
Technique), 37

384 INDEX

Peters, Tom, 10, 179

Petroski, Henry, 5, 364
phases, 29

design, implementation, and quality
assurance, 30

dividing or combining, 30
initial planning phase, 30

philosophy, references on, 361
Picasso, Pablo, 99

piecemeal development, 28
PilotingPalm, 82
pipeline (see coding pipeline)
placement, 50
planning, 44-67

answering the right questions, 57
asking the right questions, 56
balance of power across

perspectives, 56
business perspective on, 49
common bad approaches to, 58
common deliverables, 47

creative work, 90

customer perspective on, 52
customer research and its abuses,

61-63

daily work of, 60
different types of projects, 45
ending at completion of vision

document, 81
exercises, 67

facilitating changes by using
plans, 293-295

handling of difficult situations, 216
impact of organizations, 46
informing team of scheduling

techniques, 40
initial, use of time, 30

interdisciplinary view, 54
perspectives on, 48
process of, 59
projects having high production

costs, 29

raising good questions when there's
no time, 58

requirements, 63-66
requirements gathering, 45
size of project as factor, 44
specification, 45
summary of key points, 66
technology perspective on, 51
vision documents, 70-87

Planning Extreme Programming, 36
playing people off each other, 276
PM (Project Management) Clinic, 354
PMI (Project Management Institute), 366
PMs (see project managers)
Pogue, David, 82
politics, 330-333

blaming for problems, 333
blaming others for communication

failures, 201

decision making and, 159
definition of, 332

evil of (misuse of power), 335
exercises, 351

internal and client, 360

knowing the playing field, 349
creating your own field, 349

lesson in organizational politics, 331
political and organizational

environments, 273

references on, 363

risks in ignoring bureaucracy, 200
solving political problems, 340-349

assessing probability of
success, 343

clarifying your needs, 340
knowing relevant source of

power, 341-343
tactics for influencing

power, 345-349

summary of key points, 350
(see also power)

Popper, Karl, 5
positive pressure, 230
postmortem (project), 324
power, 246-249, 330

being autocratic when necessary, 249
creating your own political field, 349
definition of, 330

developing earned power, 248
distribution across all perspectives, 56
exercises, 351

feedback loop for challenging it, 253
freedom and, 331

granted and earned, 247
knowing the political playing

field, 349

misuse of, 335-340

persuasion versus dictatory
behavior, 249

politics and, 330

of priorities, 264
ratio to responsibility, 332
relevant source for granting what you

need, 341-343

sources of, 333-335

summary of key points, 350
tactics for influencing, 345-349

direct requests, 345
using to end disagreements, 254
(see also authority; politics)

Power Plays, 334, 364
precision versus accuracy, 31, 168
prediction, decision making as, 170
preparation for meetings, 210
pressure

dealing with, hero complex, 233
definition of, 229

mid-game pressures, 280
natural and artificial, 230

on project managers, 12
trial by fire, 217

price, 50
priorities, 260-267

being a prioritization machine, 264
challenge of prioritization, 263
confusion about, 261

knowing the critical path, 269
maintaining realistic views of a

project, 267
ordered lists, 261

priority 1, 263
power of, 264
saying no, 265-267

prioritization
aggressive coding pipelines and, 291
client-based project example, 360
in crisis management, 216
email, 202

of ideas, 124

private discussions, 275
probabilities

compound probability, 38
meeting schedules, middle-game

strategy, 284
odds of success in getting your needs

met, 343

schedule as set of, 33

problem solving, politics as, 332
problem space, 93

reasons for changes, 117
problem statements, 63

INDEX 385

problems
actual versus meta-problems, 220
evaluating in relation to a

project, 215
isolating for damage control, 223
mismatch of problems in

communication failures, 182
political, solving, 340-349
preventing with good processes, 197
prioritizing, 264
relentless effort to find a

solution, 270-272

(see also adversities, overcoming)
processes

causes for misuse of power, 337
change control, 298
confusing with goals, 13
creating and rolling out good

processes, 199
effects of good processes, 195-197
formula for good processes, 198
obsessing over, 27
process for changing or

eliminating, 197
protecting teams from bad

processes, 199
references on, 365

removing to improve critical
paths, 270

as sources of annoyance, 194
product designers, 53, 85
product, defining and developing, 50
productivity

professional kitchens, 6
teams, pushing too hard to meet a

deadline, 302

Profiles in Courage, 351
Program Evaluation and Review

Technique (PERT), 37
program manager, 9

programmers, communication with, 178
progress

acceleration by good processes, 197
design exploration and, 95
disagreements leading to, 224
measuring (see measurements)
schedules as means of tracking, 25
slowing to resolve quality

problems, 219
tracking during mid-game, 292

386 INDEX

project goals, 72
examples of well-written goals, 82
reminding team members of, 188
support for, 83
(see also goals)

project leader, 81
project management

exercises, 18

history of, 2
hospital emergency rooms, 7
and program management at

Microsoft, 9

summary of key points, 17
Project Management (PM) Clinic, 354
project management activity, 8
Project Management Institute (PMI), 366
project managers (PMs), 8

ability to make things happen, 260
amplifying the value of others, 184
avoidance of leadership role, 13
balance of attitudes, 10

balancing personal time needs with
team needs, 357

communication, health of team's

social network, 177

creation of unique value, 16
responsibility for feature

specifications, 140
taking advantage of your

perspective, 15
training for difficult situations, 220
use of specifications, 145

projects
controlling unstable projects, 282
knowing unique attributes of current

project, 196
resetting to last good state, 223
reviews, 209

state of, tracking with good
processes, 197

types of, 45
promotion, 50
proof-of-concept, 120
pros and cons lists, 162
protection of others, causing misuse of

power, 338

prototypes, 125-128
completion of, 304
projects with user interfaces, 126
projects without user interfaces, 126

providing alternatives, 128
questions for iterations, 128
questions for programmers, 127
starting, 125

psychology (see emotional/psychological
issues)

Psychology of Computer Programming, 36
punctuality in attending meetings, 211
punishment, 334
"Pursuing the Perfect Project

Manager", 10

quality, 304
poor quality, dealing with, 219
product, 50
volume versus, in writing, 79

quality assurance, scheduling time for, 30
Quality Is Free, 50
Quality Software Management, 231, 367
questions

creative, 101

focusing, 100
learning to ask good questions, 99
rhetorical, 101

for specification reviews, 151
Quick, Thomas, 334, 364

Rapid Applications development, 26
Rapid Development, 221,366
RC (release candidate), 323
reach of change, 297
reality, keeping a team honest, 267
received messages, 180
recurring meetings, 209
references listed in this book, xiii

references versus specifications, 143
referent power, 335
refinement, 304

reflection

in decision making, 166
facilitating meetings, 207

regressions, 313
relationships, 184-185

benefits to all team members, 178

changing the dynamic, 276
in conflict resolution and

negotiation, 226
critical path, 269

customers versus team, 357

defining roles, 184
enhancement of communication, 178

importance to success of projects, 177
programmers and the coding

pipeline, 291
trust as core of, 242

release candidate (RC), 323
relentlessness in solving problems,

270-272

reliability metrics in exit criteria, 305
reporting structure, 9
reprimands, 255
requirements, 63-66

adjusting, reasons for, 117
analyzing completion of work items

in relation to, 284

authority for defining and
approval, 46

business and technology,
integrating, 66

changing in response to
problems, 218

frequency of review and
adjustments, 47

managing future volatility of, 30
problem space originating from, 94
problem statements, 63
quality requirement (example), 93
quality requirements, 91-93
scenarios, generating from problem

statements, 64

specification, 139
requirements gathering, 45
research

as ammunition in decision

making, 168
customer, 61-63

major methods, pros and cons, 61
over-reliance on single

method, 61

resiliency and recovery from difficult
situations, 214

resources

flexibility about need for, 340
unclear allocation, causing misuse of

power, 338
use in damage control, 224

respect

managing without respect for
others, 195

solving political problems, 342

INDEX 387

responsibility
heroic behavior and, 235
managers giving to others, 255
ratio to power, 332
taking for mistakes, 255
taking responsibility in difficult

situations, 221

Restak, Richard, 161

revenge, motivating misuse of power, 338
reviews

of decision making, 171-173
specifications, 149-152
status and project review at

meetings, 209
rewards

acknowledgment for work done on
completed specs, 149

as source of power, 334
rhetorical questions, 101
ridicule, 183

risks, taking on early, 40
roadblocks, clearing, 188
roles

decision-making authority, 228
defining, 184
formation of, confusion with

goals, 13
incompetence, dealing with, 227
in planning process, 61
reminders of, eliciting best work from

others, 188

responsibility for coding
pipelines, 291

support in playing a role, 227
understanding of, 226

rollout process, 324
Roundtable on Project Management, 335, 365
rule of thirds (project schedule), 27, 303

piecemeal development, 29
Russell, Bertrand, 361

safe action (mid-game), 286-288
Salk, Jonas, 103

sanity checking, 283-286
strategic (weekly/monthly)

questions, 284
tactical (daily) questions, 284

Satir model, 232

SatirModel:Family Therapyand Beyond, 179

388 INDEX

Satir, Virginia, 179, 232
savvy project management, 272-277

awareness of environment, 273

evaluating the environment, 273
guerilla tactics (taking the smarter

route), 274-277
"Saying No: A Short Course", 265
saying no, 265-267

mastering techniques for, 266
scenarios, 64

completion of work items, analyzing
in relation to, 284

Schacter, Daniel, 70

schedules, 24-42

being behind, 286
changing in response to

problems, 218
closing design/specification gaps, 147
constructing, methodologies for, 27
divide and conquer methodology,

29-31

drafting, reviewing, and rewriting
vision documents, 79

exercises, 41

methodologies and silver bullets, 26
minimizing risks and maximizing

benefits, 39

piecemeal development, 28
priorities and ordered lists, 261
probability of meeting, middle-game

strategy, 284
purposes of, 24
reasons for failure, 31-39

common oversights, 37
difficulties of estimating, 34
ensuring good estimates, 35-37
schedule as probability, 32
snowball effect, 38

unrealistic predictions in early
phase, 31

slipping schedules resulting from
problems, 218

specification completion date, 148
summary of key points, 41

science, references on, 364

scolding, 231
SCRUM process for meetings, 210
Secret Lifeof the Brain, 161
self-deception, 268
self-discovery, 256

books on, 257

self-interest, motivating misuse of
power, 338

selfishness, 335

"Self-Reliance", 257

self-reliance, 256

sense of humor, evaluating in a project
environment, 273

Serious Games, 156

7 Habits of Highly Effective People, 184
Seven Sins of Memory, 70
Shakespeare, William, 256
Shell, Richard, 224

short development cycles, 293
shoshin (beginner's mind), 4
Silbiger, Steven, 157, 363
silver bullets, methodologies and, 27
simplicity

championing, 11
difficulty of achieving in writing

visions, 78

driving decisions, 165
easiness versus, 4

importance in viewing work, 3
simplification in good

specifications, 142
simplifying effect of good vision

documents, 74

singular evaluation, 160
sitting during meetings, 210
Six ThinkingHats, 107
skepticism, 12

customer research data and, 63

using properly in scheduling, 39
SMART acronym for writing good

goals, 75
snowball effect in schedule failures, 38

social networking, 355
software

in-house or off-the-shelf, 359

process and methodology
references, 365

SoftwareEngineering Economics, 32
Software Engineering institute, 280
Software Runaways, 267
solo-superman projects, 45
Soul ofa New Machine, 363
source, going to, 274
Sources of Power: How People Make

Decisions, 157, 160, 363

specifications, 45,48, 136-153
beginning during design phase, 144

combining different types of
information, 140

communicating intentions to the
entire team, 143

completion of, 304
deciding how much is enough, 145
design completion exit criteria, 305
design phase checkpoint, 121
managing changes, 298
managing open issues, 146-148
one primary author for, 144
responsibility for, 140
reviews, 149-152

how to conduct, 149

post-review activities by the
PM, 151

questions to ask, 151
who should attend and how it

works, 150

significance of completion, 148
specifying versus designing, 140
types of information included in, 138
what they can do, 137
what they cannot do, 138
writing

exercises, 153

summary of key ideas, 152
writing for one versus writing for

many, 145
writing tips and things to avoid, 142

spiral model (phases), 29
Spolsky, Joel, 313
stacking the deck, 276
standing during meetings, 210
Standish Group, CHAOS Report, 4
statistics, misuse of, 167

strategy

end-game (see end-game strategy)
mid-game (see middle-game

strategy), 287
references on, 361

strength in negotiation, 225
stress (see pressure)
stress relief, 229

stupidity
client or management forcing stupid

actions, 218

making people listen to or read
irrelevant things, 195

suppleness and strength in
negotiation, 225

INDEX 389

teaching others to elicit their best
work, 188

team goals, 72
individual goals as subset, 73

teams

big staff team, 46
briefing during mid-game, 289
communication among

members, 177

customers versus, 357

gauging confidence and experience
working together, 40

gauging experience with the problem
space, 40

informing of planning philosophy, 40
maintaining realistic views of a

project, 267
planning process, 59
pressure and performance, 231
pushing too hard to meet a

deadline, 302

recognizing unique characteristics
of, 196

resetting to last good state, 223
roles and clear authority, 226-228
self-regulation, 196
small contract team, 46

specification reviews, 150
upset members, dealing with, 219
war team, 320-322

technical authority, 46
technical specifications, 139

error of combining with feature
specification, 141

technology perspective, 51
customer-centric design with, 108
debate with business experts on IE

web-search, 55

important questions from, 51
integrating requirements with

business perspective, 66
telephone, using instead of email, 203
tenacity, 270-272
Ten-Day MBA, 157,363
testing, 304

release candidate rollout and

operations, 324
scheduling, 27
test conditions in exit criteria, 305

390 INDEX

"There are no bad ideas", 95
"Think outside the box", 97
Thinkertoys, 107
ThinkPak, 107

threatening, 231
threats of mutiny, 220
three-way trades, 276
time

balancing PM's time with team
time, 357

as exit criterion, 305

wasting others'time, 194
top-down schedules, 33
Total Project Control, 269, 291
Tower of Babel, 176

training for project managers, 220
transmitted messages, 180
treats, buying for others, 276
trends, evaluating, 314
triage, 318-320

daily/weekly, 319
directed, 320

"trial by fire", 217
trust, 242-258

building through commitment, 243
changing commitments, 288
in conflict resolution and

negotiation, 226
defined, 242

earning of real trust, 226
exercises, 258

golden rule for managers, 252
as insurance against adversity, 251
lack of trust as cause of

annoyance, 194
leaders defining feedback

process, 253

leadership and, 242
losing through inconsistent

behavior, 244

making explicit, 245
managing people's mistakes, 254
power and, 246-249

developing earned power, 248
persuasion versus dictation, 249
using granted power, 249

questioning others viewed as lack of
trust, 268

reaffirming in another's abilities in
tough times, 222

reprimands and, 255

solving political problems, 342
summary of key points, 257
trustful environments for idea

generation, 110
trusting in yourself, 256
trusting others, 249

delegating authority, 250
trusting programmers to make good

estimates, 36

truth about a project's status, 267
Turner, Richard, 26

TwelveAngry Men (film), 362
2001: A Space Odyssey (film), 180
tyrants, 248

Tzu, Sun, 361

u

U.S. Constitution, 85

understood messages, 180
unification, points of, 224
unique perspective of project

managers, 16
unpredictability of human behavior, 232
URLs listed in this book, xiii

usability engineers, 53
usability or design consultants, 109
use-cases, 64

user interfaces (UI)
prototyping for projects with, 126
prototyping for projects without, 126
providing alternative prototypes, 128

utility theory, 166

value added by managers, 15
value added by project managers, 16
Van Gogh, Vincent, 103
variance in a project, support by

plans, 295
velocity, 36
Venn diagrams, 54
vision, 72

vision documents, 48, 70-87

consolidation of ideas from many
sources, 75

defining for goals at different
levels, 72

determining amounts of structure and
planning, 71

drafting, reviewing, and revising, 79
examples of good project goals, 82
examples of good vision

statements, 82

exercises, 86

inclusion in other planning
deliverables, 70

inclusion of visual images, 83
inspirational quality of, 75
intentional (goal-driven) quality, 74
keeping the vision alive, 85
keeping the vision visible, 85
key points to cover, 76-77
lame statements to avoid, 81

memorable quality of, 76
modification of, 86

optimism in, 39
project goals, 262
proof-of-concept prototype with, 120
simplifying effect on the project, 74
summary of key points, 86
support for claims and goals, 83
value of writing things down, 70
visibility of, 85
visualizing nonvisual things, 84
writing well, 78-79

visual aids in specifications, 143
visualizing nonvisual things, 84
volume versus quality in writing, 79

w

war team, 320-322

bug reviews, 323
review of RC test failures, 324

wasting time as cause of annoyance, 194
Watson, Tom, 103

WBS (see work breakdown structure)
web designs

providing alternative prototypes, 128
web development, 6
Web Project Management, 289,366
Weinberg, Gerald, 36, 63, 231, 367
What problem are you trying to

solve?, 100

Whitehead, Richard, 367

William of Occam, 165

work

best work attitude, 186

getting best work from others, 187

INDEX 391

work breakdown struaure (WBS), 34,48
building and applying to project

scheduling, 291
work items, 34,262

blockage or slow down during mid-
game, 289

completion of, questioning, 291
completion satisfying requirements

and scenarios, 284

evaluating contribution to goals, 284
working smart, 272
work-item lists, 139

exit criteria, 305

managing the coding pipeline, 291
tracking mid-game progress, 292

Wright, Frank Lloyd, 103
Writing Effective UseCases, 64
writing skills, 11,78-79

difficulty of being simple, 78
drafting, reviewing, and revising

vision documents, 79

392 INDEX

email, 201-205

good writing requirement of one
primary writer, 78

tips for specifications, 142
volume is not quality, 79

writing things down, importance of, 71

XP (see Extreme Programming)

Yahoo! Groups, 356

Zeldin, Theodore, 362

zero sum resource, 302

ABOUT THE AUTHOR

Scott Berkun studied computer science, philosophy, and design at Carnegie Mellon

University. He worked at Microsoft from 1994 to 2003 on Internet Explorer 1.0 to 5.0,

Windows, MSN, and in roles including usability engineer, lead program manager, and UI

design evangelist. He left Microsoft in 2003 with the goal of filling this bookshelf

(pictured above) with books he has written. He has written two acclaimed books: this one

and TheMyths of Innovation (O'Reilly, 2007). He taught creative thinking at the University

of Washington, led an NYC architecture tour at the GEL conference, and his work has

been featured in the New York Times, Washington Post, and on National Public Radio. Scott

makes a living speaking at events and teaching seminars around the world on topics

including leading teams, managing projects, and creative thinking.

Visit www.scottberkun.com for dozens of thought-provoking essays not found in this book,

his frighteningly popular blog, and videos and podcasts of him in action.

COLOPHON

The cover image is a stock photograph from Corbis. The text font is Adobe's Meridien; the

heading font is ITC Bailey.

The International Order of Colophon Authors (IOCA) has not approved this colophon

despite several petitions, protests, and threats with poisonous, armor-piercing, razor-

sharp semicolons (we know how to use them). The world's colophonists are on full

colophon strike, refusing to edit, review, or create any new colophons until this

gloriously innovative, deeply moving, challenging yet accessible (even to brain-damaged

IOCA committee executives) colophon is approved. We can no longer tolerate the

suppression of our creative rights and must resist the IOCA's oppressive, cruel, and

tyrannical reign. If the next book you read has no colophon, blame the IOCA. Support

our cause by adding your name to the petition at www.downwithioca.org. Peace out.

Head First

Design Patterns

Head First

Object-Oriented

O'REILLY8

Related Titles from O'Reilly

Software Development
Applied Software Project Management

Beautiful Code

Designing Interfaces

Essential Business Process Modeling

Enterprise Service Bus

Head First Design Patterns

Head First Design Patterns Poster

Head First Object-Oriented Analysis and Design

Head First PMP

Head First Software Development

Learning UML 2.0

Masterminds of Programming

Practical Development Environments

Prefactoring

Process Improvement Essentials

SOA in Practice

The Art of Agile Development

UML 2.0 in a Nutshell

UML 2.0 Pocket Reference

Our books are available at most retail and online bookstores.

To order direct: 1-800-998-9938 •order§oreillyxom • www.oreilly.com

Online editions ofmost O'Reilly titles are available bysubscription atsafari.oreilly.com

The O'Reilly
Advantage
Stay Current and Save Money

Order books online:

www.oreilly.com/order_new

Questions about our

products or your order:

order@oreiHy.com

Join our email lists:Sign up

to get topic specific email

announcements or new

books,conferences, special

offers and technology news

elists@oreiHy.com

For book content

technical questions:

booktech@oreiiiy.com

To submit new book

proposals to our editors:

proposais@oreilly.com

Contact us:

O'Reilly Media, Inc.

1005 Gravenstein Highway N.

Sebastopol, CAUSA 95472

707-827-7000 or

800-998-9938

www.oreiily.com

Did you know that ifyou register
your O'Reilly books, you'll get
automatic notification and upgrade
discounts on new editions?

And that's not all! Once you've registered
your books you can:

» Win free books, T-shirts and O'Reilly Gear

» Get specialoffers available only to registered
O'Reilly customers

» Get free catalogs announcing all our new

titles (US and UK Only)

Registering is easy! Just go to
www.oreilly.com/go/register

O'REILLY8

Get the information you need when you need it, with Safari Books Online. Safari
Books Online contains the complete version of the print book in your hands plus
thousands of titles from the best technical publishers, with sample code ready to
cut and paste into your applications.

Safari is designed for people in a hurry to get the answers they need so they can
get the job done. You can find what you need in the morning, and put it towork in
the afternoon. As simple as cut, paste, and program.

To try out Safari and the online edition of the above title FREE for 45 days,
go to www.oreilly.com/go/safarienabled and enter the coupon code BSZFJ6A.

To see the complete Safari Library visit:
safari.oreiUy.com

Safari.
Books Online

Software Engineering/Project Management

Making Things Happen
"This book covers it all-from practical methods for making sure work gets done right and on time,
to the mindset that can make you a greatleadermotivating your team to do their best. Reading this
was like reading the blueprint for how the best projectsare managed at Microsoft.../ wish we
always put these lessons into action!"

-Joe Belfiore, Vice President, E-home Division, Microsoft Corporation

"Berkun has written a fast-paced, jargon-free, and witty guide...it's a great introduction to the
discipline. Seasoned and new managers will benefit from Berkun's perspectives."

-Joe Mirza, Director, CNET Networks (Cnet.com)

"Most books with the words 'project management' in the title are dry tomes. Ifthat's what you are
expecting from Berkun's book, you will be pleasantly surprised. Sure, it's aboutproject manage
ment. But it's also about creativity, situational problem solving, andleadership. Ifyou're a team
member, project manager, orevena non-technical stakeholder, Berkun offers dozens ofpractical
tools and techniques you can use, and questions you canask, to ensure your projects succeed."

-Bill Bliss,Senior VPof product and customer experience, Expedia.com

In this updated edition ofthe classic bestseller (formerly titled The Art of Project Management),
you'll learn how to plan, manage, and lead projects from a veteran manager of software and
web development. This personal account of hard lessons learned over a decade of work in

the industry distills complex concepts and challenges into practical nuggets of useful advice.
Inspiring, funny, honest, and compelling, this is the book you and your team need to have
within arm's reach for your current and future projects.

Topics include:

• Making good decisions

• Ideas and what to do with them

• Leadership and trust

What to do when things go wrong

This updated edition includes:

• Over 120 new exercises to practice

what you've learned

j A discussion guide for using the

book with teams

Revised and streamlined advice

in every chapter

SCOTT BERKUN worked for 10 years at Microsoft
Corporation on projects including Internet Explorer,
MSN, and Microsoft Windows. For two years he
worked in Microsoft's engineering excellence group,
teaching and consulting with development teams. In
2007, he wrote the acclaimed book The Myths of
Innovation (O'Reilly). Scott is a noted public speaker
and teacher on management, creative thinking, and
design. Podcasts, essays, and management discus
sion groups can be found at w/wi/v.scoffoe/7ajn.com.

C*\f*\|»| Free online edition
^3d I Cl I I for 45 days with purchase of

Books Online this book. Details on last page.

O REILLY www.oreilly.com

	2011_11_09_10_24_35
	2011_11_09_10_25_35
	2011_11_09_10_27_09
	2011_11_09_10_28_48
	2011_11_09_10_30_30
	2011_11_09_10_32_28
	2011_11_09_10_34_17
	2011_11_09_10_36_11
	2011_11_09_10_37_58
	2011_11_09_10_40_18

